zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the optimal filtering of diffusion processes. (English) Zbl 0164.19201

References:
[1]Stratonovich, R. I.: Conditional Markov processes. Theor. Probab. Appl. 5, 156-178 (1960). · Zbl 0106.12401 · doi:10.1137/1105015
[2]Kushner, H. J.: Dynamical equations for optimal nonlinear filtering. J. Differential Equations 2, 179-190 (1967). · Zbl 0158.16801 · doi:10.1016/0022-0396(67)90023-X
[3]Bucy, R. C.: Nonlinear filtering theory. IEEE Trans. Automatic Control 10, 198-199 (1965). · doi:10.1109/TAC.1965.1098109
[4]Shiryaev, A. N.: On stochastic equations in the theory of conditional Markov processes. Theor. Probab. Appl. 11, 179-184 (1966).
[5]Loéve, M.: Probability theory, 3rd edition. Princeton, N. J.: Van Nostrand 1963.
[6]Skorohod, A. V.: Studies in the theory of random processes. New York: Addison-Wesley 1965.
[7]Girsanov, I. V.: On transforming a certain class of stochastic processes by absolutely continuous substitutions of measures. Theor. Probab. Appl. 5, 285-301 (1960). · Zbl 0100.34004 · doi:10.1137/1105027
[8]Doob, J. L.: Stochastic processes. New York: Wiley 1953.
[9]Blanc-Lapierre, A., and R. Fortet: Théorie des fonctions aléatoires. Paris: Masson et Cie., Ed. 1953; Chapter VII. (Also: D. A. Darling, and A. J. F. Siegert: A systematic approach to a class of problems in the theory of noise and other random phenomena. Part I, IRE Trans. Inform. Theory IT-3, 32-37 (1957)).
[10]Dynkin, E. B.: Markov processes. Berlin-Heidelberg-New York: Springer 1965.
[11]ItÔ, K.: On a formula concerning stochastic differentials. Nagoya math. J. 3, 55-65 (1951).
[12]- On stochastic differential equations. Mem. Amer. math. Soc. 4 (1951).
[13]Wohnham, M.: Some applications of stochastic differential equations to optimal nonlinear filtering. J. Soc. industr. appl. Math. Control 2, 347-369 (1965). · Zbl 0143.19004 · doi:10.1137/0302028
[14]Zakai, M.: The optimal filtering of Markov jump processes in additive white noise. Applied Research Lab, Sylvania Elektronic Systems, Waltham, Mass. R. N. 563, June 1965.