zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The representation ring of a compact Lie group. (English) Zbl 0209.06203

MSC:
22E45Analytic representations of Lie and linear algebraic groups over real fields
22C05Compact topological groups
References:
[1]M. F. Atiyah, Characters and cohomology of finite groups,Publ. Math. Inst. des Hautes Études Sci. (Paris),9 (1961), 23–64. · Zbl 0107.02303 · doi:10.1007/BF02698718
[2]M. F. Atiyah andR. Bott,Notes on the Lefschetz fixed-point theorem for elliptic complexes, mimeographed, Harvard, 1964.
[3]M. F. Atiyah, R. Bott andA. Shapiro, Clifford modules,Topology,3 (Suppl. 1) (1964), 3–38. · Zbl 0146.19001 · doi:10.1016/0040-9383(64)90003-5
[4]M. F. Atiyah andF. Hirzebruch, Vector bundles and homogeneous spaces,Differential geometry, Proc. of Symp. in Pure Math.,3 (1961), Amer. Math. Soc., 7–38.
[5]R. Bott, Homogeneous vector bundles,Ann. of Math.,66 (1957), 203–248. · Zbl 0094.35701 · doi:10.2307/1969996
[6]R. Bott, The index theorem for homogeneous differential operators,in S. S. Cairns (éd.),Differential and combinatorial topology, a symposium in honor of Marston Morse, Princeton, 1965.
[7]N. Bourbaki,Algèbre commutative, chap. 5–6, Paris, Hermann, 1964.
[8]R. Brauer andJ. Tate, On the characters of finite groups,Ann. of Math.,62 (1955), 1–7. · Zbl 0065.01401 · doi:10.2307/2007097
[9]C. Chevalley,Theory of Lie groups, Princeton, 1946.
[10]Séminaire C. Chevalley 1,Classification des groupes de Lie algébriques, Paris, 1956–1958.
[11]A. Grothendieck, Éléments de géométrie algébrique,Publ. Math. Inst. des Hautes Études Sci. (Paris),4 (1960).
[12]G. D. Mostow, Cohomology of topological groups and solvmanifolds,Ann. of Math.,73 (1961), 20–48. · Zbl 0103.26501 · doi:10.2307/1970281
[13]Séminaire Sophus Lie, 1, Paris, 1954–1955.
[14]P. Roquette, Arithmetische Untersuchung des Charakterringes einer endlichen Gruppe,Crelle’s J.,190 (1952), 148–168.
[15]J. de Siebenthal, Sur les groupes de Lie compacts non connexes,Comm. Math. Helv.,31 (1956), 41–89. · Zbl 0075.01602 · doi:10.1007/BF02564352