zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dissections of regular polygons into triangles of equal areas. (English) Zbl 0675.52005
The following theorem is proved: Let n5 be an integer. Then a regular n-gon is dissectable into m triangles of equal areas iff m is a multiple of n. For the proof the author uses Sperner’s lemma, non- Archimedean valuations and dissectability-techniques.
Reviewer: J.M.Wills
52C17Packing and covering in n dimensions (discrete geometry)
51M20Polyhedra and polytopes; regular figures, division of spaces
52A10Convex sets in 2 dimensions (including convex curves)
05B45Tessellation and tiling problems
[1]G. Bachman,Introduction to p-adic Numbers and Valuation Theory, Academic Press, New York, 1964.
[2]H. Hasse,Number Theory, Springer-Verlag, Berlin, 1980.
[3]K. Ireland and M. Rosen,A Classical Introduction to Modern Number Theory, Springer-Verlag, New York, 1982.
[4]D. G. Mead, Dissection of the hypercube into simplexes,Proc. Amer. Math. Soc.,76 (1979), 302–304. · doi:10.1090/S0002-9939-1979-0537093-6
[5]P. Monsky, On dividing a square into triangles,Amer. Math. Monthly,77 (1970), 161–164. · Zbl 0187.19701 · doi:10.2307/2317329
[6]F. Richman and J. Thomas, Problem 5479,Amer. Math. Monthly,74 (1967), 329. · doi:10.2307/2316056
[7]J. Thomas, A dissection problem,Math. Mag.,41 (1968), 187–190. · Zbl 0164.51502 · doi:10.2307/2689143