zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Topics in Galois theory. Notes written by Henri Darmon. (English) Zbl 0746.12001
Research Notes in Mathematics. 1. Boston, MA etc.: Jones and Bartlett Publishers. xvi, 117 p. (1992).

A brief account of the content of this book is given in its foreword: “These notes are based on “Topics in Galois Theory”, a course given by J.-P. Serre at Harvard University in the Fall semester of 1988 and written down by H. Darmon. The course focused on the inverse problem of Galois theory: the construction of field extensions having a given finite group G as Galois group, typically over but also over fields such as (T).

Chapter 1 discusses examples for certain groups G of small order. The method of Scholz and Reichardt, which works over when G is a p-group of odd order, is given in Chapter 2. Chapter 3 is devoted to the Hilbert irreducibility theorem and its connection with weak approximation and the large sieve inequality. Chapters 4 and 5 describe methods for showing that G is the Galois group of a regular extension of (T) (one then says that G has property Gal T ). Elementary constructions (e.g. when G is a symmetric or alternating group) are given in Chapter 4, while the method of Shih, which works for G=PSL 2 (p) in some cases, is outlined in Chapter 5. Chapter 6 describes the GAGA principle and the relation between the topological and algebraic fundamental groups of complex curves. Chapters 7 and 8 are devoted to the rationality and rigidity criterions and their application to proving the property Gal T for certain groups (notably, many of the sporadic simple groups, including the Fischer-Griess Monster). The relation between the Hasse-Witt invariant of the quadratic form Tr(x 2 ) and certain embedding problems is the topic of Chapter 9, and an application to showing that A ˜ n has property Gal T is given. An appendix (Chapter 10) gives a proof of the large sieve inequality used in Chapter 3.

The reader should be warned that most proofs only give the main ideas; details have been left out. Moreover, a number of relevant topics have been omitted, for lack of time (and understanding), namely: a) The theory of generic extensions, ...... b) Shafarevich’s theorem on the existence of extensions of with a given solvable Galois group, ...... c) The Hurwitz schemes which parametrize extensions with a given Galois group and a given ramification structure, ...... d) The computation of explicit equations for extensions with Galois group PSL 2 (F 7 ), SL 2 (F 8 ), M 11 ,..., ...... e) Mestre’s results ...... on extensions of (T) with Galois group 6·A 6 , 6·A 7 , and SL 2 (F 7 ).”

The text contains many exercises and references to the literature. The author makes also many side remarks which relate the subject to other interesting parts of mathematics. According to the reviewer’s opinion one of the many highlights of these research notes is the relation between the inverse problem of Galois theory and weak approximation. In order to explain this connection let K be a number field and let Σ K denote the set of all places of K (including the archimedean ones). For vΣ K let K v denote the completion of K at v. If V is an absolutely irreducible integral variety over K the set of K v -rational points V(K v ) of V is naturally endowed with a K v -topology which gives it the structure of a K v -analytic space. One says that V has the weak approximation property for a finite set of places SΣ K if V(K) is dense in vS V(K v ). V is said to have property WA if it satisfies the weak approximation property with respect to S for all finite SΣ K . It is said to have property WWA if there exists a finite set of places S 0 of K such that V has the weak approximation property with respect to SΣ K for all S with SS 0 =. The author mentions a conjecture of J.-L. Colliot-Thélène, namely: Every K-unirational smooth variety has the WWA property; and then the author proves that the statement of this conjecture implies that every finite group is isomorphic to the Galois group of some Galois extension of .

In conclusion, this is a very stimulating text which, according to the variety of methods and results, will attract mathematicians working in group theory, number theory, algebraic geometry and complex analysis.

12-01Textbooks (field theory)
11-01Textbooks (number theory)
12F12Inverse Galois theory
11R32Galois theory for global fields
12E25Hilbertian fields; Hilbert’s irreducibility theorem
20D08Simple groups: sporadic finite groups
20D06Simple groups: alternating groups and groups of Lie type
20F29Representations of groups as automorphism groups of algebraic systems