zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Introduction to analytic and probabilistic number theory. Transl. from the 2nd French ed. by C.B.Thomas. (English) Zbl 0831.11001
Cambridge Studies in Advanced Mathematics. 46. Cambridge: Cambridge Univ. Press. xiv, 448 p. £45.00; $ 64.95 (1995).

[For a review of the French original (Univ. Nancy, 1990) see Zbl 0788.11001.]

This well-written monograph arose from graduate courses given in Bordeaux, Paris and Nancy; it contains an enormous wealth of material from number theory, many [difficult] exercises, requiring considerable skilfulness, and many references in the bibliography. Informative notes to every section give hints to the bibliography, to the history of the investigations under consideration and to more general or more recent results. The author has “been guided by the constant concern of emphasizing the methods rather more than the results, a strategy which we believe to be specifically heuristic. ... Without aiming at complete originality, the text tries to avoid well-trodden paths.”

The book is divided into three parts: I. Elementary methods, II. Methods of complex analysis, III. Probabilistic methods.

The author treats in Chapter I: the elementary theory of prime numbers (including Chebyshev’s theorem and Mertens’ formula), arithmetical functions (average results, extremal orders), Brun’s sieve method and the “large sieve”, and the estimation of exponential sums using van der Corput’s method (including an application to Voronoi’s theorem).

Chapter II presents the theory of Dirichlet series, including Perron’s formula, bounds for ζ ' /ζ, 1/ζ, logζ, the functional equation, and zero-free regions of the Riemann zeta function ζ(s). The prime number theorem (with remainder term x·exp{-clogx}) is proved, the Selberg-Delange method of obtaining an asymptotic expansion for nx a n , where F(s)= n=1 a n n -s is a Dirichlet series behaving similarly to (ζ(s)) z , is applied to study integers having exactly k prime factors, and to study the average distribution of the divisors of integers. The Tauberian theorem of Hardy-Littlewood- Karamata, including a version with remainder term, and an “effective” form of the Ikehara theorem are proved. Finally, the prime number theorem in arithmetic progressions is proved, and the Siegel-Walfisz theorem is stated. The Bombieri-Vinogradov prime number theorem is given in the notes.

Chapter III, Probabilistic methods, introduces different concepts of density, and relates limit distributions of arithmetical functions to characteristic functions by Lévy’s continuity theorem. The Turán- Kubilius inequality (and its dual) is proved and applied to deduce the Hardy-Ramanujan theorem on large deviations of |ω(n)-loglogN|. Effective upper estimates of nx f(n) are given for non-negative multiplicative functions f. For real-valued additive functions the Erdös-Wintner theorem and the Erdös-Kac theorem, concerning the weak convergence of the distribution function

1 N·#{nN;ω(n)loglogN+yloglogN},

are proved. For multiplicative functions, mean- value theorems of Delange, Wirsing and Halász are proved.

Denoting by P + (n) the maximal prime divisor of n, the function

Ψ(x,y)=#{nx;P + (n)y}

is studied thoroughly; estimates and asymptotic formulae due to Rankin, de Bruijn, Ennola, Alladi, Saias, Hildebrand are proved. Similarly, in the last section, the function

Φ(x,y)=#{nx;P - (n)>y}

is studied, where P - (n) denotes the least prime factor of n.

Some of the results given are new or unpublished in book form, for example, “the results derived from the Selberg-Delange method ..., ..., and the study of the function Φ(x,y) via the saddle-point method.”

The reviewer thinks this monograph is a most welcome addition to the literature on analytic and probabilistic number theory.

11-01Textbooks (number theory)
11-02Research monographs (number theory)
11NxxMultiplicative number theory
11KxxProbabilistic number theory
11MxxAnalytic theory of zeta and L-functions
11LxxExponential sums; character sums
11N37Asymptotic results on arithmetic functions
11N56Rate of growth of arithmetic functions
11A41Elementary prime number theory
11A25Arithmetic functions, etc.
11K65Arithmetic functions (probabilistic number theory)
11L40Estimates on character sums
11N60Distribution functions (additive and positive multiplicative functions)
11M06ζ(s) and L(s,χ)
11M45Tauberian theorems
11N05Distribution of primes
11N13Primes in progressions
11L07Estimates on exponential sums