zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Weak and measure-valued solutions to evolutionary PDEs. (English) Zbl 0851.35002
Applied Mathematics and Mathematical Computation. 13. London: Chapman & Hall. vii, 317 p. £39.00 (1996).

The monograph addresses evolution partial differential equations of hyperbolic and parabolic types with emphasis on problems arising in nonlinear fluid mechanics. After some auxiliary material summarized in Chapter 1, the theory of multidimensional scalar hyperbolic equations is presented in Chapter 2, using the concept of entropy. Chapter 3 introduces basic notions and results from the theory of Young measures including also the Murat-Tartar relation for nonconvex entropies and illustrating an application on the existence proof of a one-dimensional scalar hyperbolic conservation law. The last two chapters deal with problems where nonlinearities depend on the gradient of the solution, in particular nonlinear scalar hyperbolic second-order equations and a certain class of both compressible and incompressible non-Newtonian fluids. The global-in-time existence of a Young-measure-valued solution is proved. This solution, under suitable data qualification, is shown to be the weak solution and questions about uniqueness and regularity are then addressed, too.

The book contains a lot of the authors’ own results and also points out open problems. As such, it will be found useful both by experts and by advanced students interested in modern mathematical aspects of nonlinear distributed-parameter systems in general and fluid dynamics in particular.


MSC:
35-02Research monographs (partial differential equations)
35LxxHyperbolic equations and systems
76N10Compressible fluids, general
76A05Non-Newtonian fluids
35Q35PDEs in connection with fluid mechanics