zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The new book of prime number records. 3rd ed. (English) Zbl 0856.11001
New York, NY: Springer-Verlag. xxiv, 541 p. DM 88.00; öS 642.40; sFr 84.50 (1996).

This monograph is the updated and enlarged 3rd edition of a well-known, informative, entertaining book, which can be read by number theorists with pleasure. The first edition (1988) was reviewed by H. C. Williams in Zbl 0642.10001. Due to the fast development in computational number theory, records given in the first edition are often out of date, and so, as the author writes in his elegant, witty style: “The new book of prime number records differs little from its predecessor in the general planning. But it contains new sections and updated records.

It has been comforting to learn about the countless computers (machines and men), grinding without stop, so that more lines with new large numbers could be added, bringing despair for the printers and proofreaders.”

In more detail, this monograph deals with elementary proofs for the infiniteness of the primes, with a 150-page-study of primality tests, with prime-representing functions (including “prime-producing” polynomials), with special primes (regular primes, Wieferich primes, “Sophie Germain primes”, all connected with “Fermat’s last theorem”; unfortunately E. Fouvry’s deep result on the first case of Fermat’s last theorem (“Sophie Germain primes”) is not mentioned), and with heuristic and probabilistic results on prime numbers.

The extensive bibliography covers more than 70 pages. Of course, it is not possible to describe in a short review the changes in the text improving the second edition (Example: the proof of π(x), using Fermat’s numbers F n =2 2 n +1, formerly attributed to Pólya, is, as the author points out, in fact due to Goldbach). The addenda make up for an enlargement of the size of the monograph by more than 10%. It ought to be mentioned that the printing of the 3rd edition is much nicer than that of the foregoing edition. Hopefully this monograph will induce many students to become interested in prime number theory.


MSC:
11-01Textbooks (number theory)
11-02Research monographs (number theory)
11A41Elementary prime number theory
11N05Distribution of primes
11B39Fibonacci and Lucas numbers, etc.
11N13Primes in progressions
11M06ζ(s) and L(s,χ)
11P32Additive questions involving primes
11Y11Primality