zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Choice of hierarchical priors: Admissibility in estimation of normal means. (English) Zbl 0865.62004

Summary: In hierarchical Bayesian modeling of normal means, it is common to complete the prior specification by choosing a constant prior density for unmodeled hyperparameters (e.g., variances and highest-level means). This common practice often results in an inadequate overall prior, inadequate in the sense that estimators resulting from its use can be inadmissible under quadratic loss.

In this paper, hierarchical priors for normal means are categorized in terms of admissibility and inadmissibility of resulting estimators for a quite general scenario. The Jeffreys prior for the hypervariance and a shrinkage prior for the hypermeans are recommended as admissible alternatives. Incidental to this analysis is presentation of the conditions under which the (generally improper) priors result in proper posteriors.


MSC:
62C15Statistical admissibility
62F15Bayesian inference
62H12Multivariate estimation