zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Tame topology and o-minimal structures. (English) Zbl 0953.03045
London Mathematical Society Lecture Note Series. 248. Cambridge: Cambridge University Press. x, 180 p. £24.95; $ 39.95 (1998).
This book gives a beautiful introduction to aspects of o-minimality, in the spirit of Grothendieck’s ‘tame topology’. Although, as the author comments, the subject was developed in close contact with model theory, no model-theoretic background is needed, and many of the methods come from real algebraic geometry. Much of the material is not previously published. The book begins with a definition of o-minimality, a proof that o-minimal ordered groups and ordered fields are divisible abelian and real closed respectively, and a proof that the real field (,<,+,·) is o-minimal (via the Tarski -Seidenberg Theorem which is proved via a cell decomposition). The o-minimal Monotonicity and Cell Decomposition Theorems (developed in papers of Pillay and Steinhorn, and one also with Knight) are then proved in Ch. 3. Dimension and Euler characteristic and their basic properties are introduced in the next chapter. In Ch. 5 the author shows that in an o-minimal structure any definable family of definable sets is a Vapnik-Cervonenkis class (a notion from probability theory, relevant also to neural networks). This is equivalent to the fact that o-minimal structures do not have the independence property. In the next two chapters some basic point set topology is developed, followed (for o-minimal expansions of fields) by some theory of differentiation: a Mean Value Theorem, an Implicit Function Theorem, and a Cell Decomposition with C 1 -cells and maps. A Triangulation Theorem is proved in Ch. 8, via a Good Directions Lemma. This leads to a proof that in an o-minimal expansion of an ordered field, two definable sets have the same dimension and Euler characteristic if and only if there is a definable bijection between them. Under the same assumptions, a Trivialisation Theorem is proved in Section 9. It follows that given a definable family of definable sets, the sets fall into finitely many embedded definable homeomorphism types. This and Wilkie’s proof of the o-minimality of the reals with exponentiation are applied to prove a conjecture of Benedetti and Risler: roughly speaking, if we consider semialgebraic subsets of n defined by a bounded number of polynomial equalities and inequalities, and the polynomials are built from monomials by a bounded number of additions, then the semialgebraic sets fall into finitely many embedded homeomorphism types. Finally, in Ch. 10 the author moves from definable sets to definable spaces, given by an atlas of charts, and constructs definable quotients. The book is an elegant and lucid account, well-suited to a beginning graduate student, with a number of exercises. No attempt is made to cover recent material on o-minimality, for example on o-minimal expansions of the reals, or on the Trichotomy Theorem of Peterzil and Starchenko and its applications to definable groups.

MSC:
03C64Model theory of ordered structures; o-minimality
14P10Semialgebraic sets and related spaces
03-02Research monographs (mathematical logic)
12L12Model theory for fields