zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Metric number theory. (English) Zbl 1081.11057
London Mathematical Society Monographs. New Series 18. Oxford: Clarendon Press (ISBN 0-19-850083-1/hbk). xviii, 297 p. £ 75.00 (1998).

The book deals with properties of real numbers and with properties of k-tuples of real numbers which are not necessarily valid for all numbers (or k-tuples) but for “almost all” in some sense. The first result in this area was a now classical theorem of Borel, stating the following: Let t[0,1), q + , q2. We have the q-adic expansion of t: t=c k (t)q -k , where for each k, c k (t) is one of the numbers 0,1,,q-1. If we exclude the possibility c k (t)=q-1 for all sufficiently large k, the representation is unique. For j=0,1,q-1, denote N n,j (t)=#{1kn; c k (t)=j}. Then we have for almost all t (that is, for all t, except possibly a set of Lebesgue-measure 0) N n,j (t)=m q(1+o(1)) as n. Since the c k (t)’s are mutually independent random variables, the above result is a consequence of the strong law of large numbers. Since q can be replaced by any power of q and the mth power of q corresponds to a configuration of m digits, Borel’s theorem also states that for almost all t, each configuration of m digits occur with the same asymptotic relative frequency 1/q m .

The first chapter deals with the above theorem and with the presentation of tools of probability theory needed for the sequel. The next chapter considers Diophantine approximation. After proving the classical Dirichlet theorem and mentioning Hurwitz’ improvement, the author discusses Khintchine’s theorem, according to which for monotonically decreasing xψ(x) the necessary and sufficient condition for the infinitely many times sovlability of (*) |α-m/n|<ψ(n)/n for almost all α is the divergence of the series ψ(n). One can ask about the condition for the solvability of (*), if the monotonicity of xψ(x) is relaxed. A still open conjecture of Duffin and Schaeffer is that for the solvability of (*) the divergence of the series ψ(n)ϕ(n)/n suffices. (Here ϕ(·) is the Euler function.) Relaxations of the original monotonicity restriction are proved by several authors. The proofs are based on probability theory (the 0 or 1 law, Borel-Cantelli lemma, estimates of certain subintervals of [0,1)).

Chatper 3 considers inhomogeneous Diophantine approximation in a slightly more general form, namely, the number of the solutions for almost all α of the inequality αa n +β n <f(n), where a n + , b n , and f(n)0, f(n)=. Chapter 4 is devoted to the homogeneous problem having applications to the metrical theory of continued fractions and Chapter 5 to uniform distribution. The very interesting book concludes with the discussion of the Hausdorff dimensions of the occurring exceptional sets.

11K60Diophantine approximation (probabilistic number theory)
11-02Research monographs (number theory)
11J83Metric theory of numbers
11JxxDiophantine approximation
11J71Distribution modulo one
11K55Metric theory of other number-theoretic algorithms and expansions
11K50Metric theory of continued fractions