zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Geometric measure theory. A beginner’s guide. Illustrated by James F. Bredt. 4th ed. (English) Zbl 1179.49050
Amsterdam: Elsevier/Academic Press (ISBN 978-0-12-374444-9/hbk). viii, 249 p. (2009).

The geometric measure theory refers to the study of the generalized k-dimensional surfaces (integral currents) in n and their compactness and approximation properties. They make integral currents suitable for use in employing the so-called direct method of the calculus of variations for studying geometrical problems such as the problem of least area. This well-written book was developed from the author’s one-semester course at MIT for graduate students. The first goal was to provide an introduction to the fundamentals of the geometric measure theory and to make the standard text on the subject by H. Federer [Geometric measure theory. Berlin-Heidelberg-New York: Springer-Verlag (1969; Zbl 0176.00801)] more accessible. The second goal was to present applications of geometric measure theory to certain geometrical problems in the calculus of variations. The results of the author, Federer, Fleming, Almgren, and others on regularity of solutions to the least area problem and soap bubble clusters are outlined. Proofs of the double bubble, the hexagonal honeycomb, and Kelvin conjectures are discussed. A brief sketch of Almgren’s proof of the general isoperimetric inequality in Euclidean spaces is given.

This fourth edition includes updated material and references, recent results on planar soap films, and new chapters. Manifolds with density and Perelman’s proof of the Poincaré conjecture, and double bubbles in spheres, Gauss space, and tori are discussed. The author presents all main results without detailed proofs but the fundamental arguments are always given. Beautiful illustrations help readers understand basic concepts easier. Exercises with solutions which follow each chapter, and the author’s lively narrative make this book a real pleasure to read.


MSC:
49Q15Geometric measure and integration theory, integral and normal currents (optimization)
49-01Textbooks (calculus of variations)
49Q05Minimal surfaces (calculus of variations)
49Q20Variational problems in a geometric measure-theoretic setting
53-01Textbooks (differential geometry)
53C42Immersions (differential geometry)