×

Modeling the melting temperature of metallic nanowires. (English) Zbl 1203.82152

Summary: A model is developed to account for the size-dependent melting temperature of pure metallic and bimetallic nanowires, where the effects of the contributions of all surface atoms to the surface area, lattice and surface packing factors and the cross-sectional shape of the nanowires are considered. As the size decreases, the melting temperature functions of pure metallic and bimetallic nanowires decrease almost with the same size-dependent trend. Due to the inclusion of the above effects, the present model can also be applied to investigate the melting temperature depression rate of different low-dimensional system, accurately. The validity of the model is verified by the data of experiments and molecular dynamics simulations.

MSC:

82D80 Statistical mechanics of nanostructures and nanoparticles
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1021/jp051066p · doi:10.1021/jp051066p
[2] DOI: 10.1021/jp022182k · doi:10.1021/jp022182k
[3] Bonnemann H., Eur. J. Inorg. Chem. 10 pp 2455–
[4] DOI: 10.1126/science.296.5568.611a · doi:10.1126/science.296.5568.611a
[5] Pawlow P., Z. Phys. Chem. 65 pp 545–
[6] DOI: 10.1016/0039-6028(95)00728-8 · doi:10.1016/0039-6028(95)00728-8
[7] DOI: 10.1080/01418617908234864 · doi:10.1080/01418617908234864
[8] DOI: 10.1103/PhysRevB.75.165413 · doi:10.1103/PhysRevB.75.165413
[9] DOI: 10.1088/0953-8984/13/4/303 · doi:10.1088/0953-8984/13/4/303
[10] DOI: 10.1021/jp025868l · doi:10.1021/jp025868l
[11] DOI: 10.1103/PhysRevA.66.013208 · doi:10.1103/PhysRevA.66.013208
[12] DOI: 10.1088/0022-3727/38/9/016 · doi:10.1088/0022-3727/38/9/016
[13] DOI: 10.1016/j.jpcs.2005.12.003 · doi:10.1016/j.jpcs.2005.12.003
[14] DOI: 10.1088/0953-8984/19/21/216216 · doi:10.1088/0953-8984/19/21/216216
[15] DOI: 10.1021/jp900314q · doi:10.1021/jp900314q
[16] DOI: 10.1021/jp802888t · doi:10.1021/jp802888t
[17] DOI: 10.1039/b704798c · doi:10.1039/b704798c
[18] DOI: 10.1063/1.1802293 · doi:10.1063/1.1802293
[19] DOI: 10.1002/pssb.200510036 · doi:10.1002/pssb.200510036
[20] A. W. Adamson, Physical Chemistry of Surface, 5th edn. (John Wiley & Sons Inc., New York, 1990) p. 57, 294.
[21] DOI: 10.1103/PhysRevLett.47.675 · doi:10.1103/PhysRevLett.47.675
[22] Rose J. H., Phys. Rev. B 25 pp 1419–
[23] Lindemann F. A., Phys. Z 11 pp 609–
[24] DOI: 10.1063/1.2946724 · doi:10.1063/1.2946724
[25] DOI: 10.1016/j.physb.2007.12.021 · doi:10.1016/j.physb.2007.12.021
[26] DOI: 10.1016/j.jpcs.2007.02.049 · doi:10.1016/j.jpcs.2007.02.049
[27] DOI: 10.1007/BF00357195 · doi:10.1007/BF00357195
[28] Zhao M., J. Mater. Res. 16 pp 11–
[29] DOI: 10.1016/j.physe.2004.06.048 · doi:10.1016/j.physe.2004.06.048
[30] Li H., Appl. Phys. Lett. 86 pp 011913–
[31] DOI: 10.1103/PhysRevB.51.7377 · doi:10.1103/PhysRevB.51.7377
[32] DOI: 10.1002/pssa.2210660111 · doi:10.1002/pssa.2210660111
[33] DOI: 10.1103/PhysRevB.72.134109 · doi:10.1103/PhysRevB.72.134109
[34] Eun-Ha K., Met. Mater. Int. 15 pp 531–
[35] DOI: 10.1063/1.2199469 · doi:10.1063/1.2199469
[36] DOI: 10.1021/jp066132h · doi:10.1021/jp066132h
[37] DOI: 10.1103/PhysRevB.74.155441 · doi:10.1103/PhysRevB.74.155441
[38] DOI: 10.1016/S0375-9601(98)00538-6 · doi:10.1016/S0375-9601(98)00538-6
[39] DOI: 10.1103/PhysRevA.13.2287 · doi:10.1103/PhysRevA.13.2287
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.