×

An Itô-Stratonovich formula for Gaussian processes: A Riemann sums approach. (English) Zbl 1159.60018

This work is devoted to prove a change-of-variable formula for general Gaussian processes under some technical conditions on the corresponding covariance function. The stochastic integral is defined in the Stratonovich sense using an approximation by middle point Riemann sums. Then the Itô-Stratonovich formula is deduced by means of a Taylor expansion up to the sixth order, where the Malliavin calculus techniques are used to show the convergence to zero of the residual terms. The conditions on the covariance function are weak enough to include processes with infinite quadratic variation. Moreover, the authors prove that they are satisfied by the bifractional Brownian motion with parameters \((H,K)\) such that \(1/6<HK<1\), and, in particular, for the fractional Brownian motion with Hurst parameter \(1/6<H<1\).

MSC:

60G15 Gaussian processes
60H05 Stochastic integrals
60H07 Stochastic calculus of variations and the Malliavin calculus
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alòs, E.; Mazet, E.; Nualart, D., Stochastic calculus with respect to Gaussian processes, Ann. Probab., 29, 766-801 (2001) · Zbl 1015.60047
[2] Carmona, P.; Coutin, L., Stochastic integration with respect to fractional Brownian motion, Ann. Inst. H. Poincaré Probab. Statist., 39, 27-68 (2003) · Zbl 1016.60043
[3] Cheridito, P.; Nualart, D., Stochastic integral of divergence type with respect to fractional Brownian motion with Hurst parameter \(H\) in \((0, 1 / 2)\), Ann. Inst. H. Poincaré Probab. Statist., 41, 1049-1081 (2005) · Zbl 1083.60027
[4] Coutin, L.; Qian, Z., Stochastic analysis, rough path analysis and fractional Brownian motions, Probab. Theory Related Fields, 122, 108-140 (2002) · Zbl 1047.60029
[5] Decreusefond, L.; Üstünel, A. S., Stochastic analysis of the fractional Brownian motion, Potential Anal., 10, 177-214 (1998) · Zbl 0924.60034
[6] Decreusefond, L.; Üstünel, A. S., Fractional Brownian motion: Theory and applications, ESAIM Proc., 5, 75-86 (1998) · Zbl 0914.60019
[7] Gradinaru, M.; Nourdin, I., Approximation at first and second order of \(m\)-order integrals of the fractional Brownian motion and of certain semimartingales, Electron. J. Probab., 8, 1-26 (2003) · Zbl 1063.60079
[8] Gradinaru, M.; Russo, F.; Vallois, P., Generalized covariations, local time and Stratonovich Itô’s formula for fractional Brownian motion with Hurst index \(H \geq 1 / 4\), Ann. Probab., 31, 1772-1820 (2003) · Zbl 1059.60067
[9] Gradinaru, M.; Nourdin, I.; Russo, F.; Vallois, P., \(m\)-order integrals and generalized Itô’s formula; the case of a fractional Brownian motion with any Hurst index, Ann. Inst. H. Poincaré Probab. Statist., 41, 781-806 (2005) · Zbl 1083.60045
[10] Houdré, C.; Villa, J., An example of infinite dimensional quasi-helix, Contemp. Math., 336, 195-201 (2003) · Zbl 1046.60033
[11] Lyons, T., Differential equations driven by rough signals, Rev. Mat. Iberoamericana, 14, 215-310 (1998) · Zbl 0923.34056
[12] Nualart, D., The Malliavin Calculus and Related Topics (2006), Springer-Verlag: Springer-Verlag Berlin · Zbl 1099.60003
[13] Nualart, D.; Răşcanu, A., Differential equations driven by fractional Brownian motion, Collect. Math., 53, 55-81 (2002) · Zbl 1018.60057
[14] Nualart, D.; Taqqu, M. S., Wick-Itô formula for Gaussian processes, Stoch. Anal Appl., 24, 599-614 (2006) · Zbl 1123.60041
[15] F. Russo, C.A. Tudor, On the bifractional Brownian motion, preprint; F. Russo, C.A. Tudor, On the bifractional Brownian motion, preprint · Zbl 1100.60019
[16] Russo, F.; Vallois, P., Forward, backward and symmetric stochastic integration, Probab. Theory Related Fields, 97, 97-109 (1993)
[17] Russo, F.; Vallois, P., Stochastic calculus with respect to a finite quadratic variation process, Stoch. Stoch. Rep., 70, 1-40 (2000) · Zbl 0981.60053
[18] Young, L. C., An inequality of the Hölder type connected with Stieltjes integration, Acta Math., 67, 251-282 (1936) · Zbl 0016.10404
[19] Zähle, M., Integration with respect to fractal functions and stochastic calculus, Probab. Theory Related Fields, 111, 333-374 (1998) · Zbl 0918.60037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.