×

The well-posedness of \((N=1)\) classical supergravity. (English) Zbl 0563.53060

In this paper the authors investigate whether classical \((N=1)\) supergravity has a well-posed locally causal Cauchy problem. One defines well-posedness to mean that any choice of initial data (from an appropriate function space) which satisfies the supergravity constraint equations and a set of gauge conditions can be continuously developed into a space-time solution of the supergravity field equations around the initial surface. Local causally means that the domains of dependence of the evolution equations coincide with those determined by the light cones. They show that when the fields of classical supergravity are treated as formal objects, the field equations are (under certain gauge conditions) equivalent to a coupled system of quasilinear nondiagonal second-order partial differential equations which is formally nonstrictly hyperbolic (in the sense of Leray-Ohy). Hence, if the fields were numerical valued, there would be an applicable existence theorem leading to well-posedness.
Reviewer: M.Martellini

MSC:

53C80 Applications of global differential geometry to the sciences
35Q99 Partial differential equations of mathematical physics and other areas of application
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1103/PhysRevD.13.3214 · doi:10.1103/PhysRevD.13.3214
[2] DOI: 10.1016/0370-2693(76)90089-7 · doi:10.1016/0370-2693(76)90089-7
[3] DOI: 10.1016/0550-3213(78)90262-6 · doi:10.1016/0550-3213(78)90262-6
[4] DOI: 10.1016/0370-2693(77)90065-X · Zbl 0967.81505 · doi:10.1016/0370-2693(77)90065-X
[5] DOI: 10.1103/PhysRevD.16.2448 · doi:10.1103/PhysRevD.16.2448
[6] DOI: 10.1007/BF00402245 · Zbl 0529.58039 · doi:10.1007/BF00402245
[7] DOI: 10.1063/1.524791 · Zbl 0475.58022 · doi:10.1063/1.524791
[8] DOI: 10.1016/0003-4916(84)90243-4 · Zbl 0547.53043 · doi:10.1016/0003-4916(84)90243-4
[9] DOI: 10.1016/0003-4916(81)90036-1 · Zbl 0459.53050 · doi:10.1016/0003-4916(81)90036-1
[10] DOI: 10.1016/0003-4916(81)90036-1 · Zbl 0459.53050 · doi:10.1016/0003-4916(81)90036-1
[11] DOI: 10.1007/BF01350150 · Zbl 0146.33701 · doi:10.1007/BF01350150
[12] van Nieuwenhuizen P., Phys. Rep. 68 (1981) · doi:10.1016/0370-1573(81)90157-5
[13] DOI: 10.1007/BF02787025 · doi:10.1007/BF02787025
[14] Choquet-Bruhat Y., J. Math. Pures Appl. 45 pp 371– (1966)
[15] DOI: 10.1016/0003-4916(80)90387-5 · doi:10.1016/0003-4916(80)90387-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.