zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The size of irregular points for a measure. (English) Zbl 06083190
42C05General theory of orthogonal functions and polynomials
[1]A. Ancona, Démonstration d’une conjecture sur la capacité et l’effilement, C. R. Acad. Sci. Paris, 297 (1983), 393–395.
[2]E. Levin and D. S. Lubinsky, The size of the set of μ-irregular points of a measure μ, Acta Math. Hungar., 133 (2011), 242–250. · Zbl 1265.42090 · doi:10.1007/s10474-011-0091-5
[3]T. Ransford, Potential Theory in the Complex plane, Cambridge University Press (Cambridge, 1995).
[4]E. B. Saff and V. Totik, Logarithmic Potentials with External Fields, Grundlehren der mathematischen Wissenschaften, 316, Springer-Verlag (New York/Berlin, 1997).
[5]H. Stahl and V. Totik, General Orthogonal Polynomials, Encyclopedia of Mathematics and its Applications, 43, Cambridge University Press (Cambridge, 1992).
[6]M. Tsuji, Potential Theory in Modern Function Theory, Maruzen (Tokyo, 1959).
[7]J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, 3rd ed., Amer. Math. Soc. Colloquium Publications, XX, Amer. Math. Soc. (Providence, 1960).