zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The method of successive approximations for functional equations. (English) Zbl 0021.13604

References:
[1]Akbergenoff, I. A. On the Approximate Solution of Integral Equations of Fredholm and on the Determination of their Proper Values (in Russian). Recueil Mathém. 42 (1933), pp. 679–698.
[2]Banach, S. I. Théorie des opérations linéaires. Warszawa 1932.–II. Sur les opérations dans les ensembles abstraits et leurs applications aux équations intégrales. Fund. Math. III, 1922.
[3]Cacciopoli, I. Un theorema generale sull’esistenza di elementi uniti in una transformazione funzionale. Rend. Lincei t. XI, 1930.
[4]Dixon, Cambr. Trans. 19 (1902), pp. 190–233.
[5]Kantorovitch, L. I. On a Class of Functional Equations. C.R. de l’Ac. des Sc. USSR IV (XIII) 1936, pp. 219–224.–Kantorovitch, L. II. Lineare halbgeordnete Räume. Recueil Mathém. t. 2 (44), pp. 121–168.–Kantorovitch, L. III. Sur la théorie générale des opérations dans les espaces semi-ordonnés. C. R. Ac. USSR I (X) (1936), pp. 213–286.–Kantorovitch, L. IV. Allgemeine Formen gewisser Klassen von linearen Operationen. Ibid. C. R. Ac. USSR III (XII) (1936), pp. 101–106.
[6]Kantorovitch, L. & Kryloff, V. Methods of an Approximate Solution of Partial Differential equations (in Russian). Leningrad 1936.
[7]von Koch, Helge. I. Jahresb. d. Deutsch. Math. Ver. 22 (1913), pp. 285–291. –von Koch, Helge. II. Acta Math., 16 (1892), pp. 217–295.–von Koch, Helge. III. Ibid. Acta Math., 24 (1900), pp. 89–122. –von Koch, Helge. IV. Palermo Rend., 28 (1909), pp. 255–266.
[8]Koyalovitch, B. Researches on the Infinite Systems of Linear Equations. Travaux de l’Inst. Mathém. de Stekloff (in Russian). III. (1930), pp. 41–167.
[9]Kuzmin, Researches on a Class of Infinite Systems of Linear Equations. Bull. de l’Ac. des Sciences de l’URSS; 1934, No 4, pp. 515–546.
[10]Niemytzkie, I. On a Class of Non-linear Integral Equations. Rev. Math. 41 (1934), pp. 655–658.
[11]Ostrowski, A. Konvergenz-Diskussion und Fehlerabschätzung für die Newton’sche Methode bei Gleichungssysteme. Comment. Math. helv. 9 (1937), pp. 79–103. · doi:10.1007/BF01258177
[12]Pellet, A. I. Des équations majorantes. Bull. Soc. Math. de France (1909), pp. 93–101.–Pellet, A. II. Des systèmes infinies d’équations Ibid. Bull. Soc. Math. de France (1913), pp. 119–126. –Pellet, A. III. Sur la méthode des réduites. Ibid. Bull. Soc. Math. de France (1914), pp. 48–53.
[13]v. Scarborough. Numerical methods of Mathematical Analysis.
[14]Stenin, N. Evaluation of Parameters in the Integral of Christoffel-Schwarz. (In the book “Conform Transformations of Simple Connexes and Multiconnexes Regions” “in Russian”.) Leningrad 1937.
[15]De la Vallé-Poussin, Ch. J. Cours d’Analyse infinitésimale, t. I. Louvain 1913.
[16]Wintner, A. I. Zur Hillschen Theorie der Variation des Mondes. Math. Zeitschr. 24 (1925/26), pp. 259–265.–Wintner, A. II. Ein Satz über unendliche Systeme von linearen Gleichungen. Ibid. Math. Zeitschr., p. 266. · Zbl 02594872 · doi:10.1007/BF01216781