zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Finite summation formulas and congruences for Legendre and Jacobi polynomials. (English) Zbl 0087.03704
Keywords:
number theory
References:
[1]W. A. Al-Salam andL. Carlitz, Some finite summation formulas for the classical orthogonal polynomials, Rendiconti di Matematica, vol. 16 91957),
[2]W. A. Al-Salam andL. Carlitz, Congruence properties of the classical orthogonal polynomials, Duke Mathematical Journal, vol. 25 (1958).
[3]P. Appell andJ. Kampe de Ferriet, Fonctions hypergéometrique et hypersphérique. Polynomes d’Hermite, Paris 1926.
[4]H. Bateman, A generalization of the Legendre polynomial, Proceedings of the London Mathematical Society, (2), vol 3 (1905), pp. 111-123. · doi:10.1112/plms/s2-3.1.111
[5]E. Catalan, Novelles propriétés des fonctionX n , Mémoire de l’Académie Royale des sciences, des lettres, et des beaux-arts de Belgique, vol. 47 (1889).
[6]I. J. Good, A new finite series for the Legendre polynomials, Proceedings of the Cambridge Philosophical Society, vol. 51 (1955) part 2, pp. 385-388. · doi:10.1017/S0305004100030334
[7]G. Pólya andG. Szegö, Aufgaben und Lehrsätze aus der Analysis, vol. 2, Berlin 1954.