zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An approximation theorem for functionals, with applications in continuum mechanics. (English) Zbl 0097.16403
References:
[1]Noll, W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Rational Mech. Anal. 2, 197–266 (1958). · Zbl 0083.39303 · doi:10.1007/BF00277929
[2]Coleman, B. D., & W. Noll: On certain steady flows of general fluids. Arch. Rational Mech. Anal. 4, 289–303 (1959). · Zbl 0087.19402 · doi:10.1007/BF00284181
[3]Coleman, B. D., & W. Noll: Recent results in the continuum theory of viscoelastic fluids. To appear in Ann. New York Acad. Sci.
[4]Hille, E., & R. S. Phillips: Functional Analysis and Semi-Groups. American Mathematical Society Colloquium Publications, Vol. XXXI. New York 1957.
[5]Lamb, H.: Hydrodynamics, Chap. XI, 6th Edit. Cambridge: Univ. Press 1932.
[6]Spencer, A. J. M., & R. S. Rivlin: The theory of matrix polynomials and its application to the mechanics of isotropic continua. Arch. Rational Mech. Anal. 3, 309–336 (1959).
[7]Spencer, A. J. M., & R. S. Rivlin: Finite integrity bases for five or fewer symmetric 3×3 matrices. Arch. Rational Mech. Anal. 3, 435–446 (1959).
[8]Spencer, A. J. M., & R. S. Rivlin: Further results in the theory of matrix polynomials. Arch. Rational Mech. Anal. 4, 214–230 (1960). · Zbl 0095.25103 · doi:10.1007/BF00281388