zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Rational Chebyshev approximation by Remes’ algorithms. (English) Zbl 0133.39101
[1]Achieser, N. I.: Theory of Approximation (translated byC. J. Hyman). New York: Frederick Ungar Publ. Co. 1956.
[2]Fraser, W., andJ. F. Hart: On the Computation of Rational Approximations to Continuous Functions. Comm. ACM5, 401-403 (1962). · Zbl 0107.33801 · doi:10.1145/368273.368578
[3]Novodvorskii, E. N., andI. S. Pinsker: On a Process of Equalization of Maxima. Uspehi Mat. Nauk.6, 174-181 (1951) (translation byA. Shenitzer available from New York University library).
[4]Remes, E.: Sur le Calcul Effectif des Polynomes d’Approximation de Tchebichef. C. R. Acad. Sci. Paris96, 337-340 (1934).
[5]Rice, J. R.: The Characterization of Best Nonlinear Approximations. Trans. Amer. Math. Soc.96, 322-340 (1960). · doi:10.1090/S0002-9947-1960-0117490-3
[6]?: The Approximation of Functions, vol. 1. Reading, Mass.: Addison-Wesley 1964.
[7]Stoer, J.: A Direct Method for Chebyshev Approximation by Rational Functions. J. Assoc. Comput. Mach.11, 59-69 (1964).
[8]Tornheim, L.: Onn-parameter Families of Functions and Associated Convex Functions. Trans. Amer. Math. Soc.69, 457-467 (1950).
[9]Werner, H.: Tschebyscheff-Approximationen im Bereich der rationalen Funktionen bei Vorliegen einer guten Ausgangsn?herung. Arch. Rat. Mech. Anal.10, 205-219 (1962). · Zbl 0171.37404 · doi:10.1007/BF00281188
[10]?: Die konstruktive Ermittlung der Tschebyscheff-Approximierenden im Bereich der rationalen Funktionen. Arch. Rat. Mech. Anal.11, 368-384 (1962). · Zbl 0171.37501 · doi:10.1007/BF00253944