zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical integration of ordinary differential equations based on trigonometric polynomials. (English) Zbl 0163.39002

References:
[1]Antosiewicz, H. A., andW. Gautschi: Numerical methods in ordinary differential equations, Chap. 9 of ?Survey of numerical analysis? (ed.J. Todd). New York-Toronto-London: McGraw-Hill Book Co. (in press).
[2]Brock, P., andF. J. Murray: The use of exponential sums in step by step integration. Math. Tables Aids Comput.6, 63-78 (1952). · Zbl 0046.34301 · doi:10.2307/2002545
[3]Collatz, L.: The numerical treatment of differential equations, 3rd ed. Berlin-Göttingen-Heidelberg: Springer 1960.
[4]Dennis, S. C. R.: The numerical integration of ordinary differential equations possessing exponential type solutions. Proc. Cambridge Philos. Soc.56, 240-246 (1960). · doi:10.1017/S0305004100034526
[5]Urabe, M., andS. Mise: A method of numerical integration of analytic differential equations. J. Sci. Hiroshima Univ., Ser. A,19, 307-320 (1955).