zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Conformal mapping of doubly-connected domains. (English) Zbl 0174.20602
[1]Gaier, D.: Konstruktive Methoden der konformen Abbildung. Springer Tracts in Natural Philosophy, Vol. 3. Berlin-Göttingen-Heidelberg-New York: Springer 1964.
[2]Garrick, I. E.: Potential flow about arbitrary biplane wing sections. NACA Report 542, 1936.
[3]Jaswon, M. A.: Integral equation methods in potential theory. I. Proc. Roy. Soc. A275, 23–32 (1963). · Zbl 0112.33103 · doi:10.1098/rspa.1963.0152
[4]Kantorovich, L. V., Krylov, V. I.: Approximate methods of higher analysis. Groningen: Noordhoff 1964.
[5]Laura, P. A.: Conformal mapping of a class of doubly connected regions. NASA Tech. Rep. No. 8, The Catholic University of America, Washington, 1965
[6]Lewis, G. K.: Flow and load parameters of hydrostatic oil bearings for several port shapes. J. Mech. Eng. Sci.8, 173–184 (1966). · doi:10.1243/JMES_JOUR_1966_008_022_02
[7]Mikhlin, S. G.: Integral equations. London: Pergamon 1957.
[8]Muskhelishvili, N. I.: Some basic problems of the mathematical theory of elasticity. Groningen: Noordhoff 1953.
[9]Opfer, G.: Untere, beliebig verbesserbare Schranken für den Modul eines zweifach zusammenhängenden Gebietes mit Hilfe von Differenzenverfahren. Dissertation, Hamburg, 1967.
[10]Royden, H. L.: A modification of the Neumann-Poincaré method for multiply connected regions. Pacific J. Maths.2, 385–394 (1952).
[11]Savin, G. N.: Stress concentration around holes. London: Pergamon 1961.
[12]Sugiyama, H., Joh, K.: A numerical procedure of conformal mapping in case of simply, doubly and multiply connected domains from the viewpoint of Monte Carlo approach (I). Tech. Rep. Osaka Univ.12, No. 488 (1962).
[13]Symm, G. T.: An integral equation method in conformal mapping. Num. Math.9, 250–258 (1966). · Zbl 0156.16901 · doi:10.1007/BF02162088
[14]—- Numerical mapping of exterior domains. Num. Math.10, 437–445 (1967) · Zbl 0155.21502 · doi:10.1007/BF02162876
[15]Ugodčikov, A. G.: Electromodelling of the conformal mapping of a circular cylinder onto a given doubly connected region. Ukrain. Mat. Ž.7, 305–312 (1955)
[16]Wilson, H. B.: A method of conformal mapping and the determination of stresses in solid propellant rocket grains. Report No. S-38, Rohm and Haas Co., Alabama, 1963