zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical aspects of Mathieu eigenvalues. (English) Zbl 0196.49901
[1]Norman Bazley,Lower bounds for eigenvalues with application to the helium atom, Proc. Nat. Acad. Sci., 45, pp. 850–853, 1959. · Zbl 0087.43004 · doi:10.1073/pnas.45.6.850
[2]Norman Bazley,Lower bounds for eigenvalues, J. Math. Mech., Vol. 10, No. 2, pp. 289–307, 1961.
[3]G. Blanch,On the Computation of Mathieu Functions, J. Math. and Phys., Vol. XXV, No. 1, pp. 1–20, 1946.
[4]G. Blanch and I. Rhodes,Table of characteristic values of Mathieu’s equation for large values of the parameter, J. Washington Acad. Sci., Vol. 45, No. 6, pp. 166–196, 1955.
[5]G. Blanch,Numerical Evaluation of Continued Fractions, SIAM Rev., Vol. 6, No. 4, pp. 383–421, 1964. · Zbl 0133.38904 · doi:10.1137/1006092
[6]C. J. Bouwkamp,Theoretische en numericke Behandeling van de Buiging door een Ronde Opening, J. B. Wolters’ U.M., 1941. Diss. Groningen, Batavia.
[7]C. J. Bouwkamp,On Spheroidal Wave Functions of Order Zero, J. Math. Phys., 26, pp. 79–92, 1947.
[8]G. Fichera,Sul Calcolo degli Autovalori, Atti del simposio internazionale: Applicazione dell’Analisi alla Fisica Matematica, Cagliari-Lanasi, 1964.
[9]G. Fichera,Approximation and Estimates for Eigenvalues, Proc. of the Conference on Numerical Analysis, University of Maryland, May 1965.
[10]Fox and Stadter, Referenced in the Weinstein paper, [20].
[11]S. Goldstein,Mathieu Functions, Camb. Phil. Soc. Trans., Vol. 23, pp. 303–336, 1927.
[12]E. L. Ince,Tables of Elliptic Cylinder Functions, Roy. Soc. Edin. Proc., pp. 355–423, Vol. 52, 1932.
[13]N. W. McLachlan,Theory and Application of Mathieu Functions, Oxford, Clarendon Press, 1947.
[14]J. Meixner and F. W. Schäfke,Mathieusche Funktionen und Sphäroidfunktionen, Berlin, Springer, 1954.
[15]Françoise Michaud,Étude sur les représentations approchées des solutions de l’équation de Mathieu, Centre National de la Recherche Scientifique, Institut Blaise Pascal, Laboratoire de calcul numérique, Paris, June 1965.
[16]National Bureau of Standards,Tables Relating to Mathieu Functions, New York, Columbia University Press, 1951.
[17]Hanan Rubin,Anecdote on power series expansions of Mathieu functions, J. Math. and Phys., No. 4, pp. 339–341, 1964.
[18]A. Weinstein, Memorial Sc. Math. No. 88, 1937.
[19]A. Weinstein,Bounds for eigenvalues and the method of intermediate problems, Proceedings of the International Conference on Partial Differential Equations and Continuum Mechanics, Madison, Wis., pp. 39–53, University of Wisconsin Press, 1961.
[20]A. Weinstein,Some numerical results in intermediate problems for eigenvalues, Proc. of the Conference on Numerical Analysis, University of Maryland, May 1965.
[21]E. T. Whittaker and G. N. Watson,Modern Analysis, Cambridge, University Press, fourth edition (1927). reprinted in 1963.