zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the basic theorem of complementarity. (English) Zbl 0227.90044

MSC:
90C33Complementarity and equilibrium problems; variational inequalities (finite dimensions)
References:
[1]F.W. Browder, ”On continuity of fixed points under deformation of continuous mappings,”Summa Brasil, Math. 4 (1960).
[2]R.W. Cottle, ”Nonlinear programs with positively bounded Jacobians”,SIAM Journal of Applied Mathematics 14 No. 1 (1966).
[3]R.W. Cottle and G.B. Dantzig, ”Complementary Pivot theory of mathematical programming”,Linear Algebra and its applications 1 (1968).
[4]B.C. Eaves, ”The linear complementarity problem”, Working paper No. 275, Center for Research in Management Science, University of California, Berkeley, Calif. (August, 1969),Management Science 17, No. 9 (May 1971).
[5]B.C.Eaves, An odd theorem,Proceedings of the American Mathematical Society 26, No. 3 (1970).
[6]P.Hartman and G.Stampacchia, ”On some nonlinear differential-functional equations”,Acta Mathematica 115 (1966).
[7]S.Karamardian, ”Duality in mathematical programming”, Operations Research Center, University of California, Berkeley, Calif. (1966), or Parts 1 and 2 or ”The nonlinear complementarity problem with applications”,JOTA 4, Nos. 2 and 3 (1969).
[8]S. Karamardian, ”The complementarity problem”, Grad. School of Admin. and Math. Dept., University of California, Irvine, Calif.,Mathematical Programming 1, No. 3 (1971) to appear.
[9]C.E.Lemke, ”Bimatrix equilibrium points and mathematical programming,Management Science 11, No. 7 (1965).
[10]C.E. Lemke, ”Recent results on complementarity problems”, Math. Dept. Rensselaer Polytechnic Institute.
[11]H.Scarf and T.Hansen, ”On the applications of a recent combinatorial algorithm, ”Cowles Commission Discussion Paper No. 272 (April 1969).
[12]R.Wilson, ”Computing equilibria ofN-person games”, Grad. School of Business, Stanford University, Stanford. Calif.