zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Affine root systems and Dedekind’s η-function. (English) Zbl 0244.17005

MSC:
17B20Simple, semisimple, reductive Lie (super)algebras
11F22Relationship of automorphic forms to Lie algebras, etc.
References:
[1]Bourbaki, N.: Groupes et algèbres de Lie, Chapitres 4, 5, et 6. Paris: Hermann 1969.
[2]Bruhat, F., Tits, J.: Groupes réductifs sur un corps local. Publ. Math. I.H.E.S., 41 (to appear).
[3]Freudenthal, H., Vries, H. de: Linear Lie groups. New York: Academic Press 1969.
[4]Hardy, G. H., Wright, E. M.: Introduction to the theory of numbers (4th edition). Oxford: Oxford University Press 1959.
[5]Kostant, B.: The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group. Amer. J. Math.81, 973-1032 (1959). · Zbl 0099.25603 · doi:10.2307/2372999
[6]Macdonald, I. G.: The Poincaré series of a Coxeter group (to appear).
[7]Winquist, L.: Elementary proof ofp(11m+6)?0 (mod 11). J. Comb. Theory6, 56-59 (1969). · Zbl 0241.05006 · doi:10.1016/S0021-9800(69)80105-5
[8]Moody, R. V.: A new class of Lie algebras. J. Alg.10, 211-230 (1968). · Zbl 0191.03005 · doi:10.1016/0021-8693(68)90096-3
[9]?: Euclidean Lie algebras. Can. J. Math.21, 1432-1454 (1969). · Zbl 0194.34402 · doi:10.4153/CJM-1969-158-2