zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Subelliptic estimates and function spaces on nilpotent Lie groups. (English) Zbl 0312.35026

MSC:
65H10Systems of nonlinear equations (numerical methods)
26A16Lipschitz (Hölder) classes, etc. (one real variable)
35D10Regularity of generalized solutions of PDE (MSC2000)
22E30Analysis on real and complex Lie groups
43A80Analysis on other specific Lie groups
46E35Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
References:
[1]Bony, J. M., Principe du maximum, inégalité de Harnack, et unicité du probléme de Cauchy pour les operateurs elliptiques dégénérésAnn. Inst. Fourier Grenoble,19 (1) (1969), 277–304.
[2]Calderón, A. P., Lebesgue spaces of differentiable functions and distributions,Proc. Symp. Pure Math.,4 (1961), 33–49.
[3]Coifman, R. andWeiss, G. Analyse harmonique non-commutative sur certains espaces homogènes, Lecture notes #242, Springer-Verlag, Berlin, (1971).
[4]Dyer, J. L. A nilpotent Lie algebra with nilpotent automorphism group,Bull. Amer. Math. Soc.,76 (1970), 52–56. · Zbl 0198.05402 · doi:10.1090/S0002-9904-1970-12364-3
[5]Folland, G. B. andKohn, J. J. The Neumann problem for the Cauchy-Riemann complex, Ann. of Math. Studies #75, Princeton University Press, Princeton, (1972).
[6]Folland, G. B. andStein, E. M. Parametrices and estimates for the 206-1 complex on strongly pseudoconvex boundaries.Bull. Amer. Math. Soc.,80 (1974), 253–258. · Zbl 0294.35059 · doi:10.1090/S0002-9904-1974-13449-X
[7]Folland, G. B. andStein, E. M. Estimates for the 206-2 complex and analysis on the Heisenberg group,Comm. Pure Appl. Math.,27 (1974), 429–522. · Zbl 0293.35012 · doi:10.1002/cpa.3160270403
[8]Guillemin, V. andSternberg, S. Subelliptic estimates for complexes,Proc. Nat. Acad. Sci. U.S.A.,67 (1970), 271–274. · Zbl 0202.20801 · doi:10.1073/pnas.67.1.271
[9]Hochschild, G. The structure of Lie groups, Holden-Day, San Francisco, (1965).
[10]Hörmander, L. Hypoelliptic second-order differential equations,Acta Math.,119 (1967), 147–171. · Zbl 0156.10701 · doi:10.1007/BF02392081
[11]Hunt, G. A. Semigroups of measures on Lie groups,Trans. Amer. Math. Soc.,81 (1956), 264–293. · doi:10.1090/S0002-9947-1956-0079232-9
[12]Jørgensen, P. Representations of differential operators on a Lie group, to appear.
[13]Knapp, A. W. andStein, E. M. Intertwining operators for semi-simple groups,Ann. of Math.,93 (1971), 489–578. · Zbl 0257.22015 · doi:10.2307/1970887
[14]Kohn, J. J. andNirenberg, L. Non-coercive boundary value problems,Comm. Pure Appl. Math.,18 (1965), 443–492. · Zbl 0125.33302 · doi:10.1002/cpa.3160180305
[15]Komatsu, H. Fractional powers of operators,Pac. J. Math.,19 (1966), 285–346.
[16]Komatsu, H. Fractional powers of operators, II: Interpolation spaces,Pac. J. Math.,21 (1967), 89–111.
[17]Komatsu, H. Fractional powers of operators, III: Negative powers,J. Math. Soc. Japan,21 (1969), 205–220. · Zbl 0181.41003 · doi:10.2969/jmsj/02120205
[18]Komatsu, H. Fractional powers of operators, IV: Potential operators,J. Math. Soc. Japan,21 (1969), 221–228. · doi:10.2969/jmsj/02120221
[19]Komatsu, H. Fractional powers of operators, V: Dual operators,J. Fac. Sci. Univ. Tokyo, Sec. IA,17 (1970), 373–396.
[20]Komatsu, H. Fractional powers of operators, VI: Interpolation of nonnegative operators and imbedding theorems,J. Fac. Sci. Univ. Tokyo, Sec. IA,19 (1972), 1–62.
[21]Korányi, A. andVági, S. Singular integrals in homogeneous spaces and some problems of classical analysis,Ann. Scuola Norm. Sup. Pisa,25 (1971), 575–648.
[22]Oleįnik, O. A. andRadkevič, E. V. Second order equations with nonnegative characteristics form, Amer. Math. Soc., Providence, (1973).
[23]Schwartz, L. Théorie des distributions, Hermann, Paris, (1966).
[24]Stein, E. M. Topics in harmonic analysis, Ann. of Math. Studies #63, Princeton University Press, Princeton, (1970).
[25]Stein, E. M. Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, (1970).
[26]Stein, E. M. Some problems in harmonic analysis suggested by symmetric spaces and semi-simple groups,Proc. Internat. Congress Math. Nice (1970), vol. I, 173–189.
[27]Stein, E. M. Singular integrals and estimates for the Cauchy-Riemann equations,Bull. Amer. Math. Soc.,79 (1973), 440–445. · Zbl 0257.35040 · doi:10.1090/S0002-9904-1973-13205-7
[28]Stein, E. M. andWeiss, G. Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, (1971).
[29]Trèves, F. Topological vector spaces, distributions, and kernels, Academic Press, New York, (1967).
[30]Yosida, K. Functional analysis, 3rd ed.. Springer-Verlag, New York, (1971).
[31]Zygmund, A. Trigonometric series, vol. II, Cambridge University Press, Cambridge, (1959).