zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Thermodynamics, stability, and boundedness of fluids of complexity 2 and fluids of second grade. (English) Zbl 0324.76001

76A05Non-Newtonian fluids
[1]Langlois, W. E., Steady flow of a slightly viscoelastic fluid between rotating spheres. Quart. Appl. Math. 21, 61-71 (1963).
[2]Coleman, B. D., & W. Noll, An approximation theorem for functionals, with applications in continuum mechanics. Arch. Rational Mech. Anal. 6, 355-370 (1960). · Zbl 0097.16403 · doi:10.1007/BF00276168
[3]Ting, T.-W., Certain non-steady flows of second order fluids. Arch. Rational Mech. Anal. 14, 1-26 (1963). · Zbl 0139.20105 · doi:10.1007/BF00250690
[4]Coleman, B. D., & H. Markovitz, Normal stress effects in second-order fluids. J. Appl. Physics 35, 1-9 (1964). · Zbl 0133.19205 · doi:10.1063/1.1713068
[5]Markovitz, H., & B. D. Coleman, Nonsteady helical flows of second-order fluids. Physics of Fluids 7, 833-841 (1964). · Zbl 0151.40101 · doi:10.1063/1.1711294
[6]Coleman, B. D., R. J. Duffin, & V. Mizel, Instability, uniqueness, and non-existence theorems for the equation u t = u xx -u xtx on a strip. Arch. Rational Mech. Anal. 19, 100-116 (1965). · Zbl 0292.35016 · doi:10.1007/BF00282277
[7]Coleman, B. D., & V. Mizel, Breakdown of laminar shearing flows for second-order fluids in channels of critical width. ZAMM 46, 445-448 (1966). · doi:10.1002/zamm.19660460706
[8]Truesdell, C., Fluids of second grade regarded as fluids of convected elasticity. Physics of Fluids 8, 1936-1938 (1965). · doi:10.1063/1.1761139
[9]Coleman, B. D., Thermodynamics of materials with memory. Arch. Rational Mech. Anal. 17, 1-46 (1964).
[10]Coleman, B. D., & W. Noll, The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Rational Mech. Anal. 13, 167-178 (1963). · Zbl 0113.17802 · doi:10.1007/BF01262690
[11]Gurtin, M. E., Modern Continuum Thermodynamics. Notas De Matemática Física, Vol. II. Instituto de Matemática, Universidade Federal do Rio de Janeiro, 1972.
[12]Coleman, Bernard D., & James M. Greenberg, Thermodynamics and the stability of fluid motion. Arch. Rational Mech. Anal. 25, 321-341 (1967). · Zbl 0156.23901 · doi:10.1007/BF00291935
[13]Coleman, Bernard D., On the stability of equilibrium states of general fluids. Arch. Rational Mech. Anal. 36, 1-32 (1970).
[14]Coleman, B. D., On the dynamical stability of fluid phases. IUTAM Symposium on Instability of Continuous Systems. Berlin-Heidelberg-New York: Springer, 1971.
[15]Serrin, James, On the stability of viscous fluid motions. Arch. Rational Mech. Anal. 3, 1-13 (1959). · Zbl 0089.40803 · doi:10.1007/BF00284160
[16]Joseph, Daniel D., & Roger L. Fosdick, The free surface on a liquid between cylinders rotating at different speeds, Part I. Arch. Rational Mech. Anal. 49, 321-380 (1973).
[17]Joseph, Daniel D., Gordon S. Beavers, & Roger L. Fosdick, The free surface on a liquid between cylinders rotating at different speeds, Part II. Arch. Rational Mech. Anal. 49, 381-401 (1973).
[18]Tanner, R. I., Some methods for estimating the normal stress functions in viscometric flows. Trans. Soc. Rheology 14, 483-507 (1970). · doi:10.1122/1.549175
[19]Gurtin, Morton E., On the thermodynamics of materials with memory. Arch. Rational Mech. Anal. 28, 40-50 (1968). · Zbl 0169.28002 · doi:10.1007/BF00281562
[20]Truesdell, C., & W. Noll, The Non-Linear Field Theories of Mechanics. Flügge’s Handbuch der Physik, III/3. Berlin-Heidelberg-New York: Springer 1965.
[21]Truesdell, C., Rational Thermodynamics. New York: McGraw-Hill, 1969.
[22]Spencer, A. J. M., Theory of invariants. Continuum Physics, Vol. I, Ed. A. Cemal Eringen. New York: Academic Press 1971.
[23]Ogawa, Hajimu, On lower bounds and uniqueness for solutions of the Navier-Stokes equations. J. Math. Mech. 18, 445-452 (1968).
[24]Oldroyd, J. G., The motion of an elastico-viscous liquid contained between coaxial cylinders, I. Quart. J. Mech. Appl. Math. 4, 271-282 (1951). · Zbl 0043.39504 · doi:10.1093/qjmam/4.3.271
[25]Ericksen, J. L., Thermoelastic stability. Proc. 5th U.S. National Congr. Appl. Mech., 187-193 (1966).
[26]Dyer, R. H., & D. E. Edmunds, Lower bounds for solutions of the Navier-Stokes equations. Proc. London Math. Soc. 3, 169-178 (1968). · Zbl 0157.57005 · doi:10.1112/plms/s3-18.1.169
[27]Garabedian, P., Partial Differential Equations. New York: Wiley, 1964.
[28]Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow. New York: Gordon & Breach 1969.
[29]Payne, L. E., & H. F. Weinberger, An optimal Poincaré inequality for convex domains. Arch. Rational Mech. Anal. 5, 286-292 (1960). · Zbl 0099.08402 · doi:10.1007/BF00252910
[30]Friedman, Avner, Partial Differential Equations of Parabolic Type. Prentice Hall: Englewood Cliffs, N.J. 1964.
[31]Fichera, G., Existence theorems in elasticity. Handbuch der Physik, VIa/2. Berlin-Heidelberg-New York: Springer 1972.
[32]Payne, L. E., & H. F. Weinberger, On Korn’s inequality. Arch. Rational Mech. Anal. 8, 89-98 (1961). · Zbl 0107.31105 · doi:10.1007/BF00277432
[33]Bernstein, B., & R. Toupin, Korn inequalities for the sphere and for the circle. Arch. Rational Mech. Anal. 6, 51-64 (1960). · Zbl 0094.30001 · doi:10.1007/BF00276153
[34]Dafermos, C. M., Some remarks on Korn’s inequality. Z. Angew. Math. Phys. 19, 913-920 (1968). · Zbl 0169.55904 · doi:10.1007/BF01602271
[35]Hardy, G. H., J. E. Littlewood, & G. Pólya, Inequalities. Cambridge: University Press 1964.
[36]Noll, W., A mathematical theory of the mechanical behavior of continuous media. Arch. Rational Mech. Anal. 2, 197-226 (1958). · Zbl 0083.39303 · doi:10.1007/BF00277929
[37]Gurtin, Morton E., The linear theory of elasticity. Handbuch der Physik, VIa/2. BerlinHeidelberg-New York: Springer 1972.
[38]Day, William Alan, The Thermodynamics of Simple Materials with Fading Memory. Springer Tracts in Natural Philosophy, Vol. 22. Berlin-Heidelberg-New York: Springer 1972.
[39]Halmos, Paul Richard, Finite-Dimensional Vector Spaces. Princeton, N. J.: D. Van Nostrand 1958.
[40]Truesdell, C., The natural time of a viscoelastic fluid: its significance and measurement. Physics of Fluids 7, 1134-1142 (1964). · doi:10.1063/1.1711352