zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Riemann-Roch for singular varieties. (English) Zbl 0332.14003

MSC:
14C15(Equivariant) Chow groups and rings; motives
14B05Singularities (algebraic geometry)
14F05Sheaves, derived categories of sheaves, etc.
References:
[1]M. F. Atiyah andF. Hirzebruch, Analytic cycles on complex manifolds,Topology,1, 1961, 25–45. · Zbl 0108.36401 · doi:10.1016/0040-9383(62)90094-0
[2]M. F. Atiyah andF. Hirzebruch, The Riemann-Roch theorem for analytic embeddings,Topology,1, 1961, 151–166. · Zbl 0108.36402 · doi:10.1016/0040-9383(65)90023-6
[3]W. Fulton, Rational equivalence on singular varieties, Appendix to this paper,Publ. Math. I.H.E.S., no 45 (1975), 147–167.
[4]P. Baum, Riemann-Roch for singular varieties,A.M.S. Proceedings, Institute on Differential Geometry, Summer 1973, to appear.
[5]P. Baum, W. Fulton andR. MacPherson,Riemann-Roch and topological K-theory, to appear.
[6]A. Borel andJ.-P. Serre, Le théorème de Riemann-Roch,Bull. Soc. Math. France,86 (1958), 97–136.
[7]A. Grothendieck andJ. Dieudonné, Eléments de géométrie algébrique,Publ. Math. I.H.E.S., nos 4, 8, 11, 17, 20, 24, 28, 32, 1960–67.
[8]W. Fulton, Riemann-Roch for singular varieties,Algebraic Geometry, Arcata 1974, Proc. of Symp. in Pure Math.,29, 449–457.
[9]A. Grothendieck, La théorie des classes de Chern,Bull. Soc. Math. France,86 (1958), 137–154.
[10]R. MacPherson,Analytic vector-bundle maps, to appear.
[11]R. MacPherson, Chern classes of singular varieties,Ann. of Math,100 (1974).
[12]M. Raynaud, Flat modules in algebraic geometry,Algebraic Geometry, Oslo 1970, Proceedings of the 5th Nordic Summer-School in Mathematics, 255–275, Wolters-Noordhoff, Groningen, 1970.
[13]J.-P. Serre, Algèbre locale; multiplicités,Springer Lecture Notes in Mathematics,11 (1965).
[14]P. Berthelot, A. Grothendieck, L. Illusie et al., Théorie des intersections et théorème de Riemann-Roch,Springer Lecture Notes in Mathematics,225 (1971).