zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Remarks on the Korteweg-de Vries equation. (English) Zbl 0334.35062

35Q99PDE of mathematical physics and other areas
35G25Initial value problems for nonlinear higher-order PDE
35B20Perturbations (PDE)
35D05Existence of generalized solutions of PDE (MSC2000)
35B45A priori estimates for solutions of PDE
[1]C. Bardos, U. Frisch, P. Penel, P. L. Sulem (to appear).
[2]T. B. Benjamin,Lectures on Non-Linear Wave Motion: Lectures in Applied Mathematics, No. 15, Amer. Math. Soc., 1974.
[3]J. Bona, R. Scott,Solutions of the K. d. V. equation in fractional order Sobolev spaces, Duke Math. J. (to appear).
[4]J. Bona, R. S. Smith,The initial value problem for the Korteweg-de Vries equation, Philos. Trans. Roy. Soc. London278 (1975), 555–604. · Zbl 0306.35027 · doi:10.1098/rsta.1975.0035
[5]Dushane,Generalizations of the Korteweg-de Vries equation, Proc. Symp. in Pure Math.23 (1971).
[6]T. Kato,Quasilinear equations of evolution, with applications to partial differential equations, inSpectral theory and differential equations: Lecture Notes in Mathematics, Vol. 448, Springer-Verlag, 1974.
[7]T. Kato,The Cauchy problem for quasilinear symmetric hyperbolic equations (to appear).
[8]P. D. Lax,Periodic solutions of the K. d. V. equations, Comm. Pure Appl. Math.28 (1975), 141–188. · Zbl 0302.35008 · doi:10.1002/cpa.3160280105
[9]J. C. Saut,Applications de l’interpolation non linéaire à des problèmes d’évolution non linéaires, J. Math. Pures Appl.9 (Sér. 54) (1974), 27–52.
[10]J. C. Saut,Sur certaines généralisations de l’équation de Korteweg-de Vries, C. R. Acad. Sc. Paris280 (1975), 653–656.
[11]W. A. Strauss,On the regularity of functions with values in various Banach spaces, Pacific J. Math.19 (1966), 543–551.
[12]L. Tartar,Interpolation non linéaire et régularité, J. Functional Analysis9 (1972), 469–489. · Zbl 0241.46035 · doi:10.1016/0022-1236(72)90022-5
[13]R. Temam,Sur un problème non linéaire, J. Math. Pures Appl.48 (1969), 159–172.
[14]R. Temam,Proceedings on a Conference on Mathematical Problems in Turbulence: Lecture Notes in Mathematics, Springer-Verlag (to appear).
[15]M. Tsutsumi, T. Mukasa,Parabolic regularizations for the generalized Korteweg-de Vries equation, Funkcial. Ekvac.14 (1971), 89–110.