zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Boundary value problems with bounded nonlinearity and general null-space of the linear part. (English) Zbl 0337.35034
35J65Nonlinear boundary value problems for linear elliptic equations
35B45A priori estimates for solutions of PDE
[1]Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary condition I. Comm. pure appl. Math.12, 623–727 (1959) · Zbl 0093.10401 · doi:10.1002/cpa.3160120405
[2]Browder, F.E.: Estimates and existence theorems for elliptic boundary value problems. Proc. nat. Acad. Sci. USA45, 365–372 (1959) · Zbl 0093.29402 · doi:10.1073/pnas.45.3.365
[3]Dancer, E.N.: On the Dirichlet problem for weakly nonlinear elliptic partial differential equations. Proc. Royal Soc. Edinburgh. Will appear in Proc. Royal Soc. Edinburgh
[4]Fučík, S.: Nonlinear equations with noninvertible linear part. Czechosl. math. J.24, 467–495 (1974)
[5]Fučík, S.: Further remark on a theorem by E.M. Landesman and A.C. Lazer. Commentationes math. Univ. Carolinae15, 259–271 (1974)
[6]Fučík, S.: Remarks on some nonlinear boundary value problems. Commentationes math. Univ. Carolinae17, 721–730 (1976)
[7]Fučík, S., Kučera, M., Nečas, J.: Ranges of nonlinear asymptotically linear operators. J. diff. Equations17, 375–394 (1975) · Zbl 0299.47035 · doi:10.1016/0022-0396(75)90050-9
[8]Kazdan, J.L., Warner, F.W.: Remarks on some quasilinear elliptic equations. Comm. pure appl. Math.28, 567–597 (1975) · Zbl 0325.35038 · doi:10.1002/cpa.3160280502
[9]Krbec, M.: OnL p-estimates for solutions of elliptic boundary value problems. Commentationes math. Univ. Crrolinae17, 363–375 (1976)
[10]Landesman, E.M., Lazer, A.C.: Nonlinear perturbations of linear boundary value problem at resonance, J. Math. Mech.19, 609–623 (1970)
[11]Nečas, J.: Les Méthodes Directes en Théorie des Équations Elliptiques. Prague: Academia 1967
[12]Nečas, J.: Sur la régularité des solutions variationnelles des équations elliptiques non-linéaires d’ordre 2k en deux dimensions. Ann. Scuola norm. sup. Pisa, Sci fis. mat., III Ser.21, 427–457 (1967)
[13]Nečas, J.: On the range of nonlinear operators with linear asymptotes which are not invertible. Commentationes math. Univ. Carolinae14, 63–72 (1973)
[14]Williams, S.A.: A sharp sufficient condition for solution of a nonlinear elliptic boundary value problem. J. diff. Equations8, 580–586 (1970) · Zbl 0209.13003 · doi:10.1016/0022-0396(70)90031-8