zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
All unitary ray representations of the conformal group SU(2,2) with positive energy. (English) Zbl 0352.22012
MSC:
22E45Analytic representations of Lie and linear algebraic groups over real fields
22E70Applications of Lie groups to physics; explicit representations
References:
[1]Mack, G., Abdus Salam: Ann. Phys. (N.Y.)53, 174 (1969) · doi:10.1016/0003-4916(69)90278-4
[2]Segal, I.: MIT preprint
[3]Lüscher, M., Mack, G.: Commun. math. Phys.41, 203 (1975) · doi:10.1007/BF01608988
[4]Graev, M. L.: Dokl. Acad. Nauk SSR98, 517 (1954)
[5]Castell, L.: Nucl. Phys.B4, 343 (1967)
[6]Yao, T.: J. Math. Phys.8, 1931 (1967);9, 1615 (1968); · Zbl 0171.23902 · doi:10.1063/1.1705108
[7]Sternheimer, D.: J. Math. Pure Appl.47, 289 (1969) and references cited in 1
[8]Rühl, W.: Commun. math. Phys.30, 287 (1973);34, 149 (1973); The canonical dimension of fields as the limit of noncanonical dimensions, preprint Kaiserslautern (March 1973) · Zbl 0257.22019 · doi:10.1007/BF01645506
[9]Mack, G., Todorov, I.T.: J. Math. Phys.10, 2078 (1969) · Zbl 0183.29003 · doi:10.1063/1.1664804
[10]Mack, G.: Osterwalder-Schrader positivity in conformal invariant quantum field theory. In: Lecture notes in physics, Vol. 37, (ed. H. Rollnik, K. Dietz), p. 66. Berlin-Heidelberg-New York: Springer 1975
[11]Mack, G.: Commun. math. Phys.53, 155 (1977); Nucl. Phys.B 118, 445 (1977) · doi:10.1007/BF01609130
[12]Dieudonné, I.: Treatise on analysis, Vol. III. New York: Academic Press 1972
[13]Hermann, R.: Lie groups for physicists, Chap. 6, 7. New York: W. A. Benjamin 1966
[14]Wigner, E.: Ann math.40, 149 (1939) · doi:10.2307/1968551
[15]Joos, H.: Forschr. Physik10, 65 (1965); · Zbl 0131.44002 · doi:10.1002/prop.2180100302
[16]Weinberg, S.: Phys. Rev.133, B 1318 (1964),134, B 882 (1964)
[17]Kihlberg, A., Müller, V.F., Halbwachs, F.: Commun. math. Phys.3, 194 (1966) · Zbl 0158.14202 · doi:10.1007/BF01645412
[18]Warner, G.: Harmonic analysis on semi-simple Lie groups, Vols. I, II. Berlin-Heidelberg-New York: Springer 1972
[19]Wallach, N. R.: Harmonic analysis on homogeneous spaces. New York: Marcel Dekker 1973
[20]Rose, M. E.: Elementary theory of angular momentum, Appendix I. New York: John Wiley 1957
[21]Gelfand, I. M., Shilov, G. E.: Generalized functions, Vol. I. New York: Academic Press
[22]Koller, K.: Commun. math. Phys.40, 15 (1975) · Zbl 0306.22015 · doi:10.1007/BF01614094
[23]Dobrev, V. K., Mack, G., Petkova, V. B., Petrova, S. G., Todorov, I. T.: Elementary representations and intertwining operators for the generalized Lorentz group. Lecture notes in physics, Vol. 63. Berlin-Heidelberg-New York: Springer 1977
[24]Kunze, R., Stein, E.: Amer. J. Math.82, 1 (1960);83, 723 (1961);89, 385 (1967) · Zbl 0156.37104 · doi:10.2307/2372876
[25]Knapp, A., Stein, E.: Ann. Math.93, 489 (1971); · Zbl 0257.22015 · doi:10.2307/1970887
[26]Schiffmann, G.: Bull. Soc. Math. France99, 3 (1971)
[27]Neumark, M. A.: Lineare Darstellungen der Lorentzgruppe, §8, Satz 2, p. 110. Berlin: VEB dt. Verlag der Wissenschaften 1963
[28]Nelson, E.: Analytic vectors, Ann. Math.70, 572 (1959)
[29]Lüscher, M.: Analytic representations of simple Lie groups and their continuation to contractive representations of holomorphic Lie semi-groups, DESY 75/71 (1975)
[30]Ferrara, S., Gatto, R., Grillo, A.: Phys. Rev.D9, 3564 (1975);
[31]Zaikov, R. P.: Bulg. J. Phys.2, 2 (1975)