zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Efficiency in multiple objective optimization problems. (English) Zbl 0362.90092

MSC:
90C30Nonlinear programming
90C05Linear programming
References:
[1]H.P. Benson and T.L. Morin, ”The vector maximization problem: proper efficiency and stability”,SIAM Journal on Applied Mathematics, to appear.
[2]A. Charnes and W.W. Cooper,Management models and industrial applications of linear programming, vol. 1 (Wiley, New York, 1961).
[3]J.G. Ecker and I.A. Kouada, ”Finding efficient points for linear multiple objective programs”,Mathematical Programming 3 (1975) 375–377. · doi:10.1007/BF01580453
[4]J.P. Evans and R.E. Steuer, ”A revised simplex method for linear multiple objective programs”,Mathematical Programming 4 (1972) 54–72.
[5]A.M. Geoffrion, ”Proper efficiency and the theory of vector maximization”,Journal of Mathematical Analysis and Applications 22 (3) (1968) 618–630. · Zbl 0181.22806 · doi:10.1016/0022-247X(68)90201-1
[6]A.M. Geoffrion, ”Duality in nonlinear programming”,SIAM Review 13 (1971) 1–37. · Zbl 0232.90049 · doi:10.1137/1013001
[7]H. Isermann, ”Proper efficiency and the linear vector maximum problem”,Operations Research 22 (1) (1974) 189–191. · Zbl 0274.90024 · doi:10.1287/opre.22.1.189
[8]T. Koopmans, ”Analysis of production as an efficient combination of activities”, in:activity analysis of production and allocation, Cowles Commission Monograph vol. 13 (Wiley, New York, 1951) pp. 33–97.
[9]E.L. Peterson and J.G. Ecker, ”A unified duality theory for quadratically constrained quadratic programs andl p -constrainedl p -approximation problems”,Bulletin of the American Mathematical Society 74 (1968) 316–321. · Zbl 0155.28502 · doi:10.1090/S0002-9904-1968-11938-X
[10]E.L. Peterson and J.G. Ecker, ”Geometric programming: duality in quadratic programming andl p -approximation I”, in: H.W. Kuhn and A.W. Tucker, eds.,Proceedings of international symposium on mathematical programming (Princeton, NJ 1967).
[11]E.L. Peterson and J.G. Ecker, ”Geometric programming: duality in quadratic programming andl p -approximation II (canonical programs)”,SIAM Journal on Applied Mathematics 17 (1969) 317–340. · Zbl 0172.43704 · doi:10.1137/0117031
[12]E.L. Peterson and J.G. Ecker, ”Geometric programming: duality in quadratic programming andl p -approximation III (degenerate programs)”,Journal of Mathematical Analysis and Applications 29 (1970) 365–383. · Zbl 0183.49003 · doi:10.1016/0022-247X(70)90085-5
[13]J. Philip, ”Algorithms for the vector maximization problem”,Mathematical Programming 2 (1972) 207–229. · Zbl 0288.90052 · doi:10.1007/BF01584543
[14]R.T. Rockafellar, ”Lagrange multipliers in optimization”, in: R.W. Cottle, ed.,Proceedings of symposia in applied mathematics IX, (Am. Math. Soc., Providence, RI, to appear).
[15]R.T. Rockafellar, ”Ordinary convex programs without a duality gap”,Journal of Optimization Theory and Applications 7 (3) (1971) 143–148. · Zbl 0198.24604 · doi:10.1007/BF00932472
[16]R.T. Rockafellar, ”Some convex programs whose duals are linearly constrained”, in:Nonlinear programming (Academic Press, New York, 1970) pp. 293–322.
[17]R.E. Wendell, A.P. Hurter, Jr. and T.J. Lowe, ”Efficient points in location problems”,Journal of Mathematical Analysis and Applications 49 (2) (1975) 430–468. · Zbl 0313.65047 · doi:10.1016/0022-247X(75)90189-4
[18]P.L. Yu and M. Zeleny, ”The set of all nondominated solutions in linear cases and a multicriteria simplex method”,AIIE Transactions, to appear.
[19]P.L. Yu and M. Zeleny, ”On some linear multi-parametric programs”, Rept. No. CSS 73-05, Center for System Science, University of Rochester, Rochester, NY (1973).