zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Error estimates for the finite element solution of variational inequalities. Part I. primal theory. (English) Zbl 0369.65030

MSC:
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
65K05Mathematical programming (numerical methods)
References:
[1]Baiocchi, C., Pozzi G.A.: An evolution variational inequality related to a diffusion absorption problem, Appl. Math. Optim. (to appear)
[2]Brézis, H.: Problèmes unilateraux. Thése d’etat, Paris, 1971; J. Math. Pures Appl., IX. Sér.72, 1-168 (1971)
[3]Brézis, H.: Nouveaux théorèmes de régularité pour les problèmes unilatéraux. Recontre entre physiciens théoriciens et mathématiciens, Strasbourg 12 (1971)
[4]Brézis, H.: Seuil de régularité pour certains problèmes unilateraux C.R. Acad. Sci. Paris Sér. A273, 35-37 (1971)
[5]Brezzi, F., Sacchi, G.: A finite element approximation of a variational inequality related to hydraulics. To appear
[6]Brézis, H. R., Stampacchia, G.: Sur la régularité de la solution d’inéquations elliptiques. Bull. Soc. Math. France96, 153-180 (1968)
[7]Ciarlet, P.G.: Numerical analysis of the finite element method. Séminaire de Mathématiques Supérieures, Université de Montréal, 16 June?11 July, 1975 (to appear)
[8]Ciarlet, P. G., Raviart, P.A.: General lagrange and hermite interpolation inR? with applications to finite element methods. Arch. Rational Mech. Anal.46, 177-199 (1972) · Zbl 0243.41004 · doi:10.1007/BF00252458
[9]Falk, R.: Error estimates for the approximation of a class of variational inequalities. Math. Comput.28, 963-971 (1974) · doi:10.1090/S0025-5718-1974-0391502-8
[10]Falk, R. S., Mercier, B.: Error estimates for elastoplastic problems. R.A.I.R.O. Anal. Num.11, 117-134 (1977)
[11]Frehse, J.: Two dimensional variational problems with thin obstacles. Math. Z.143, 279-288 (1975) · Zbl 0302.49002 · doi:10.1007/BF01214380
[12]Gagliardo, E.: Proprietà di alcuni classi di funcioni in pui variabili. Ricerche Mat.,7, 102-137 (1958)
[13]Giaquinta, M., Modica, G.: Regolarità lipschitziana per le soluzioni di alcuni problemi di minimo con vincolo. Ann. Mat. Pura Appl., IV. Ser. (to appear)
[14]Glowinski, R.: Introduction to the approximation of elliptic variational inequalities. Report 76006, University of Paris VI, France, 1976
[15]Glowinski, R., Lions, J. L., Trémolieres, R.: Analyse numérique des inéquations variationelles. Paris: Dunod 1976
[16]Hager, W.W.: State constrained convex control problems: Part II. Approximation. Séminaire IRIA, 1975
[17]Hlavá?ek, I.: Dual finite element analysis for elliptic problems with obstacles on the boundary. I. To appear
[18]Kinderlehrer, D.: How a minimal surface leaves an obstacle. Acta Math.130 221-292 (1973) · Zbl 0268.49050 · doi:10.1007/BF02392266
[19]Lewy, H., Stampacchia, G.: On the regularity of the solution of a variational inequality. Commun. pure appl. Math.22, 153-188 (1969) · Zbl 0167.11501 · doi:10.1002/cpa.3160220203
[20]Lions, J. L.: Problèmes aux limites dans les équations aux dérivées partielles. Montreal, Canada: University of Montreal Press 1965
[21]Lions, J.L.: Équations aux dérivées partielles et calcul des variations. Cours de la Faculté des Sciences de Paris, 1967
[22]Lions, J.L., Magenes, E.: Problèmes aux Limites non Homogènes et Applications, tome I. Paris: Dunod 1968
[23]Lions, J.L., Stampacchia, G.: Variational inequalities. Comm. Pure Appl. Math.20, 493-519 (1967) · Zbl 0152.34601 · doi:10.1002/cpa.3160200302
[24]Mosco, U., Strang, G.: One sided approximation and variational inequalities. Bull. Amer. Math. Soc.80, 308-312 (1974) · Zbl 0278.35026 · doi:10.1090/S0002-9904-1974-13477-4
[25]Scarpini, F., Vivaldi, M. A.: Error estimates for the approximation of some unilateral problems R.A.I.R.O. Anal. Num.11, 197-208 (1977)
[26]Strang, G.: Approximation in the finite element method. Numer. Math.19, 81-98 (1972) · Zbl 0221.65174 · doi:10.1007/BF01395933
[27]Strang, G.: The finite element method-linear and nonlinear applications. Proceedings of the International Congress of Mathematicians, Vancouver, Canada, 1974
[28]Strang, G., Berger, A.: The change in solution due to change in domain. Proc. AMS Summer Institute on Partial Differential Equations, Berkeley, 1971
[29]Strang, G., Fix, G.: An analysis of the finite element method. Englewood Cliffs New Jersey: Prentice-Hall 1973