zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Irreducible representations of finite classical groups. (English) Zbl 0372.20033

MSC:
20G40Linear algebraic groups over finite fields
20G05Representation theory of linear algebraic groups
References:
[1]Andrews, G.E.: Partitions,q-functions and the Lusztig-Macdonald-Wall conjectures, Inventiones math.41, 91-102 (1977) · Zbl 0354.20006 · doi:10.1007/BF01390165
[2]Benson, C.T., Gay, D.A.: On dimension functions of the generic algebra of typeD n , J. of Algebra,45, 435-438 (1977) · Zbl 0371.20036 · doi:10.1016/0021-8693(77)90335-0
[3]Bourbaki, N.: Groupes et algèbres de Lie, Ch. 4,5 et 6. Paris: Hermann 1968
[4]Deligne, P., Lusztig, G.: Representations of reductive groups over finite fields. Ann. of Math.103, 103-161 (1976) · Zbl 0336.20029 · doi:10.2307/1971021
[5]Dye, R.: The simple groupFH (8, 2) of order 212·35·52·7 and the associated geometry of triality. Proc. London Math. Soc. (3)18, 521-562 (1968) · Zbl 0159.31104 · doi:10.1112/plms/s3-18.3.521
[6]Enomoto, H.: The characters of the finite symplectic groupSp(4,q),q=2 f . Osaka J. Math.9, 75-94 (1972)
[7]Frame, J.S., Rudvalis, A.: Characters of symplectic groups overF 2, Finite groups ’72. Proc. Gainesville Conf. p. 41-54. North Holland, Amsterdam 1973
[8]Harish-Chandra: Eisenstein series over finite fields. Funct. Analysis and Related Fields (ed. F.E. Browder). Berlin-Heidelberg-New York: Springer 1970
[9]Hardy, G.H., Wright, E.M.: The theory of numbers. Oxford: Clarendon Press 1971
[10]Hoefsmit, P.N.: Representations of Hecke algebras of finite groups withBN pairs of classical type, Thesis, Univ. of British Columbia, Vancouver 1974
[11]Kilmoyer, R.: Principal series representations of finite Chevalley groups (preprint, Clark University)
[12]Langlands, R. P.: On the classification of irreducible representations of real algebraic groups, preprint, Institute for Advanced Study
[13]Lusztig, G.: Classification des représentations irréductibles des groupes classiques finis. c. r. Acad. Sci. Paris. Sér. A,284, 473-475 (28 Fév. 1977)
[14]Lusztig, G.: Coxeter orbits and eigenspaces of Frobenius, Inventiones math.38, 101-159 (1976) · Zbl 0366.20031 · doi:10.1007/BF01408569
[15]Lusztig, G.: On the finiteness of the number of unipotent classes, Inventiones math.34, 201-213 (1976) · Zbl 0371.20039 · doi:10.1007/BF01403067
[16]Lusztig, G., Srinivasan, B.: The characters of the finite unitary groups (to appear in the J. of Algebra)
[17]Spaltenstein, N.: Sous-groupes de Borel contenant un unipotent donné (preprint, University of Warwick)
[18]Srinivasan, B.: The characters of the finite symplectic groupSp(4,q), Trans. Amer. math. Soc.131, 488-525 (1968)
[19]Steinberg, R.: A geometric approach to the representations of the full linear group over a Galois field, Trans. Amer. math. Soc.71, 274-282 (1951) · doi:10.1090/S0002-9947-1951-0043784-0
[20]Wall, G. E.: On the conjugacy classes in the unitary, symplectic and orthogonal groups, J. Austral. math. Soc.3, 1-62 (1963) · Zbl 0122.28102 · doi:10.1017/S1446788700027622