zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Une méthode itérative de résolution d’une inéquation variationnelle. (French) Zbl 0395.49013

MSC:
49J40Variational methods including variational inequalities
49M99Numerical methods in calculus of variations
47H05Monotone operators (with respect to duality) and generalizations
65J15Equations with nonlinear operators (numerical methods)
65K10Optimization techniques (numerical methods)
References:
[1]H. Brezis and F. E. Browder,Non-linear ergodic theorems, Bull. Amer. Math. Soc.82 (1976), 959–961. · Zbl 0339.47029 · doi:10.1090/S0002-9904-1976-14233-4
[2]H. Brezis et P. L. Lions,Produits infinis de résolvantes, Israel J. Math.29 (1978), 329–345. · Zbl 0387.47038 · doi:10.1007/BF02761171
[3]R. E. Bruck,An iterative solution of a variational inequality for certain monotone operators in Hilbert space. Bull. Amer. Math. Soc.81 (1975), 890–892 (voir également le Corrigendum82 (1976)). · Zbl 0332.49005 · doi:10.1090/S0002-9904-1975-13874-2
[4]R. E. Bruck,Weak convergence of an ergodic iteration, preprint.
[5]R. E. Bruck,On the strong convergence of an iteration for the solution of operator equations involving monotone operators in Hilbert space, preprint.