zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Restart procedures for the conjugate gradient method. (English) Zbl 0396.90072

90C30Nonlinear programming
[1]E.M.L. Beale, ”A derivation of conjugate gradients”, in: F.A. Lootsma, ed.,Numerical methods for nonlinear optimization (Academic Press, London, 1972) pp. 39–43.
[2]H.P. Crowder and P. Wolfe, ”Linear convergence of the conjugate gradient method”,IBM Journal of Research and Development 16 (1972) 431–433. · Zbl 0263.65068 · doi:10.1147/rd.164.0431
[3]R. Fletcher, ”A Fortran subroutine for minimization by the method of conjugate gradients”, Report R-7073, A.E.R.E., Harwell, 1972.
[4]R. Fletcher and M.J.D. Powell, ”A rapidly convergent descent method for minimization”,Computer Journal 6 (1963) 163–168.
[5]R. Fletcher and C.M. Reeves, ”Function minimization by conjugate gradients”,Computer Journal 7 (1964) 149–154. · Zbl 0132.11701 · doi:10.1093/comjnl/7.2.149
[6]D.G. Luenberger,Introduction to linear and nonlinear programming (Addison-Wesley, New York, 1973).
[7]M.F. McGuire and P. Wolfe, ”Evaluating a restart procedure for conjugate gradients”, Report RC-4382, IBM Research Center, Yorktown Heights, 1973.
[8]E. Polak,Computational methods in optimization: a unified approach (Academic Press, London, 1971).
[9]M.J.D. Powell, ”Some convergence properties of the conjugate gradient method”,Mathematical Programming 11 (1976) 42–49. · Zbl 0356.65056 · doi:10.1007/BF01580369
[10]G. Zoutendijk, ”Nonlinear programming, computational methods”, in: J. Adabie, ed.,Integer and nonlinear programming (North-Holland, Amsterdam, 1970) pp. 37–86.