zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability regions and transition phenomena for harvested predator-prey systems. (English) Zbl 0397.92019
92D25Population dynamics (general)
[1]Albrecht, F., Gatzke, H., Haddad, A., Wax, N.: The dynamics of two interacting populations. J. Math. Analysis and Appl. 46, 658-670 (1974) · Zbl 0281.92012 · doi:10.1016/0022-247X(74)90267-4
[2]Brauer, F.: Destabilization of predator-prey systems under enrichment. Int. J. Control 23, 541-552 (1976) · Zbl 0319.92012 · doi:10.1080/00207177608922180
[3]Brauer, F.: Boundedness of solutions of predator-prey systems. Theor. Pop. Biol. to appear, 1979
[4]Brauer, F., Soudack, A. C., Jarosch, H. S.: Stabilization, and destabilization of predator-prey systems under harvesting and nutrient enrichment. Int. J. Control 23, 553-573 (1976) · Zbl 0317.92003 · doi:10.1080/00207177608922181
[5]Bulmer, M. G.: The theory of prey-predator oscillations. Theor. Pop. Biol. 9, 137-150 (1976) · Zbl 0352.92015 · doi:10.1016/0040-5809(76)90041-1
[6]Coddington, E. A., Levinson, N.: Theory of Ordinary Differential Equations. New York: McGraw-Hill, 1955
[7]Conley, C. C.: Isolated Invariant Sets and the Morse Index. Conference Board on Mathematical Sciences, 1978
[8]Holling, C. S.: The functional response of predators to prey density and its rate in mimicry and population regulation. Mem. Ent. Soc. Canada 45, 1-73 (1965)
[9]Kolmogorov, A. N.: Sulla teoria di Volterra della lotta per l’esistenza. Giorn. Inst. Ital. Attuari 7, 74-80 (1936)
[10]Kopell, N., Howard, L. N.: Bifurcations and trajectories joining critical points. Adv. in Math. 18, 306-358 (1975) · Zbl 0361.34026 · doi:10.1016/0001-8708(75)90048-1
[11]Ludwig, D., Jones, D. S., Holling, C. S.: Qualitative analyses of insect outbreak systems: The spruce budworm and forest. J. Animal Ecology 47, 315-332 (1978) · doi:10.2307/3939
[12]May, R. M.: Stability and Complexity in Model Ecosystems. Princeton: Princeton Univ. Press, 1973
[13]Thom, R.: Structural Stability and Morphogenesis. Reading, Mass.: W. A. Benjamin, 1975