zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Asymptotik bei Jacobi-Polynomen und Jacobi-Funktionen. (German) Zbl 0411.33008
MSC:
33C45Orthogonal polynomials and functions of hypergeometric type
References:
[1]Askey, R.: Orthogonal Polynomials and Special Functions. Philadelphia: Society for Industrial and Applied Mathematics 1975
[2]Elliott, D.: Uniform Asymptotic Expansions of the Jacobi Polynomials and an Associated Function. Math. Comput.25, 309-314 (1971) · doi:10.1090/S0025-5718-1971-0294737-5
[3]Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions. New York: McGraw-Hill (1953). Hier besonders Band 1, Kap. 2: ?The Hypergeometric Function?
[4]Szegö, G.: Orthogonal Polynomials. 4. Auflage. Amer. Math. Soc. Colloquium Publications23. Providence, Rhode Island: American Mathematical Society 1975
[5]Szegö, G.: Asymptotische Entwicklungen der Jacobischen Polynome. Schr. Königsberger Gelehrtenges., naturw. Klasse10, 35-112 (1933-34)
[6]Tricomi, F.G.: Vorlesungen über Orthogonalreihen. 2. Auflage. Berlin-Heidelberg-New York: Springer 1975
[7]Tricomi, F.G.: Expansion of the Hypergeometric Function in Series of Confluent ones and Application to the Jacobi Polynomials. Comment. Math. Helv.25, 196-204 (1951) · Zbl 0054.03302 · doi:10.1007/BF02566454
[8]Hahn, E.: Asymptotische Entwicklungen für Jacobi-Funktionen. Dissertation, Tübingen 1978