zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Goal programming sensitivity analysis using interval penalty weights. (English) Zbl 0412.90063
MSC:
90C31Sensitivity, stability, parametric optimization
References:
[1]J.G. Ecker and I.A. Kouada, ”Finding efficient points for linear multiple objective programs”,Mathematical Programming 8 (1975) 375–377. · doi:10.1007/BF01580453
[2]R.L. Keeney and H. Raiffa,Decisions with multiple objectives: Preferences and value tradeoffs (Wiley, New York, 1976).
[3]B. Roy, ”How outranking relation helps multiple criteria decision making”, in: J.L. Cochrane and M. Zeleny, eds.,Multiple criteria decision making (University of South Carolina Press, 1973) pp. 179–201.
[4]R.E. Steuer, ”Interval criterion weights programming: A portfolio selection example, gradient cone modification, and computational experience”,Proceedings: Tenth annual southeastern regional TIMS meeting (1974) pp. 246–255.
[5]R.E. Steuer, ”ADBASE: An adjacent efficient basis algorithm for vector-maximum and interval weighted-sums linear programming problems”,Journal of Marketing Research 12 (1975) 454–455.
[6]R.E. Steuer, ”Multiple objective linear programming with interval criterion weights”,Management Science 23 (3) (1976) 305–316. · Zbl 0437.90086 · doi:10.1287/mnsc.23.3.305
[7]R.E. Steuer, ”Operating manual for the ADBASE/FILTER computer package for solving multiple objective linear programming problems”, (Release: 5/78), College of Business and Economics, University of Kentucky (1978).
[8]R.E. Steuer, ”Vector-maximum gradient cone contraction techniques”, in: S. Zionts, ed.,Multiple criteria problem solving, Lecture Notes in Economics and Mathematical Systems, Vol. 155 (Springer, Berlin, 1978) pp. 462–481.