zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The principle of symmetric criticality. (English) Zbl 0417.58007

MSC:
58E05Abstract critical point theory
References:
[1]Bochner, S.: Compact groups of differentiable transformations. Ann. Math.46, 372–381 (1945) · Zbl 0063.00487 · doi:10.2307/1969157
[2]Coleman, S.: Classical lumps and their quantum descendants. Preprint, Harvard Physics Dept. (1975)
[3]Eells, J., Lemaire, L.: A report on harmonic maps. Bull. London Math. Soc.10, 1–68 (1978) · Zbl 0401.58003 · doi:10.1112/blms/10.1.1
[4]Fuller, F.B.: Harmonic mappings. Proc. Nat. Acad. Sci. (U.S.A.)40, 110–116 (1954) · Zbl 0056.41102 · doi:10.1073/pnas.40.10.987
[5]Guillemin, V., Sternberg, S.: Remarks on a paper of Hermann. Trans. Am. Math. Soc.130, 110–116 (1968) · doi:10.1090/S0002-9947-1968-0217226-9
[6]Hermann, R.: The formal linearization of a semi-simple Lie algebra of vector fields about a singular point. Trans. Am. Math. Soc.130, 105–109 (1968) · doi:10.1090/S0002-9947-1968-0217225-7
[7]Hsiang, W.Y.: On the compact, homogeneous, minimal submanifolds. Proc. Nat. Acad. Sci. (U.S.A.)50, 5–6 (1966) · Zbl 0178.55904 · doi:10.1073/pnas.56.1.5
[8]Jacobson, N.: Lie algebras. New York: Interscience 1962
[9]Lang, S.: Introduction to differentiable manifolds. New York: Interscience 1966
[10]Misner, C.: Harmonic maps as models for physical theories. Phys. Rev. D (in press)
[11]Palais, R.S.: Morse theory on Hilbert manifolds. Topology2, 299–340 (1963) · Zbl 0122.10702 · doi:10.1016/0040-9383(63)90013-2
[12]Palais, R.S.: Foundations of global nonlinear analysis. New York: Benjamin 1968
[13]Pauli, W.: Theory of relativity. London: Pergamon Press 1958
[14]Weyl, H.: Space-time-matter. New York: Dover 1951