zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An iterative row-action method for interval convex programming. (English) Zbl 0431.49042

90C55Methods of successive quadratic programming type
65G30Interval and finite arithmetic
90C25Convex programming
[1]Robers, P. D., andBen-Israel, A.,An Interval Programming Algorithm for Discrete Linear L 1-Approximation Problems, Journal of Approximation Theory, Vol. 2, pp. 323-336, 1969. · Zbl 0211.52101 · doi:10.1016/0021-9045(69)90001-X
[2]Robers, P. D., andBen-Israel, A.,A Suboptimal Method for Interval Linear Programming, Linear Algebra and Its Applications, Vol. 3, pp. 383-405, 1970. · Zbl 0215.58806 · doi:10.1016/0024-3795(70)90008-X
[3]Herman, G. T., andLent, A.,A Family of Iterative Quadratic Optimization Algorithms for Pairs of Inequalities, with Application in Diagnostic Radiology, Mathematical Programming Study, Vol. 9, pp. 15-29, 1978.
[4]Herman, G. T., andLent, A.,Iterative Reconstruction Algorithms, Computers in Biology and Medicine, Vol. 6, pp. 273-294, 1976. · doi:10.1016/0010-4825(76)90066-4
[5]Herman, G. T., Lent, A., andLutz, P. H.,Relaxation Methods For Image Reconstruction, Communications of the Association for Computing Machinery, Vol. 21, pp. 152-158, 1978.
[6]Bregman, L. M.,The Relaxation Method of Finding the Common Point of Convex Sets and Its Application to the Solution of Problems in Convex Programming, USSR Computational Mathematics and Mathematical Physics, Vol. 7, pp. 200-217, 1967. · doi:10.1016/0041-5553(67)90040-7
[7]Hildreth, C.,A Quadratic Programming Procedure, Naval Research Logistics Quarterly, Vol. 4, pp. 79-85, 1975; see alsoErratum, Naval Research Logistic Quarterly, Vol. 4, p. 361, 1975. · doi:10.1002/nav.3800040113
[8]Lent, A., andCensor, Y.,Extensions of Hildreth’s Row-Action Method for Quadratic Programming, SIAM Journal on Control and Optimization, Vol. 18, pp. 444-454, 1980. · Zbl 0444.49025 · doi:10.1137/0318033
[9]D’Esopo, D. A.,A Convex Programming Procedure, Naval Research Logistics Quarterly, Vol. 6, pp. 33-42, 1959. · doi:10.1002/nav.3800060105
[10]Censor, Y., andHerman, G. T.,Row-Generation Methods for Feasibility and Optimization Problems Involving Sparse Matrices and Their Application, Sparse Matrix Proceedings-1978, Edited by I. S. Duff and G. W. Stewart, Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, pp. 197-219, 1979.
[11]Censor, Y.,Row-Action Methods for Huge and Sparse Systems and Their Applications, SIAM Review, to appear.
[12]Rockafellar, R. T.,Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.
[13]Stoer, J., andWitzgall, C.,Convexity and Optimization in Finite Dimensions, I, Springer-Verlag, Berlin, Germany, 1970.
[14]Ponstein, J.,Seven Kinds of Convexity, SIAM Review, Vol. 9, pp. 115-119, 1967. · Zbl 0164.06501 · doi:10.1137/1009007
[15]Ben-Israel, A.,Linear Equations and Inequalities on Finite Dimensional, Real or Complex, Vector Spaces: A Unified Theory, Journal of Mathematical Analysis and Applications, Vol. 27, pp. 367-389, 1969. · Zbl 0174.31502 · doi:10.1016/0022-247X(69)90054-7
[16]Lent, A.,A Convergent Algorithm for Maximum Entropy Image Restoration, with a Medical X-Ray Application, Image Analysis and Evaluation, Edited by R. Shaw, Society of Photographic Scientists and Engineers, Washington, DC, pp. 249-257, 1977.
[17]Daniel, J. W.,The Approximate Minimization of Functionals, Prentice-Hall, Englewood Cliffs, New Jersey, 1971.
[18]Censor, Y., Lakshminarayanan, A. V., andLent, A.,Relaxational Methods for Large-Scale Entropy Optimization Problems, with Application in Image Reconstruction, Information Linkage Between Applied Mathematics and Industry, Edited by P. C. C. Wang, Academic Press, New York, New York, pp. 539-546, 1979.