zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hysteresis, oscillations, and pattern formation in realistic immobilized enzyme systems. (English) Zbl 0433.92014
MSC:
92CxxPhysiological, cellular and medical topics
35B32Bifurcation (PDE)
35B35Stability of solutions of PDE
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
References:
[1]Betz, A., Chance, B.: Phase relationship of glycolytic intermediates in yeast cells with oscillatory metabolic control. Arch. Biochem. Biophys., 109, 579–594 (1965) · doi:10.1016/0003-9861(65)90403-0
[2]Boa, J. A.: A model biochemical reaction. Ph.D. Thesis, California Institute of Technology, Pasadena, 1974
[3]Boa, J. A., Cohen, D. S.: Bifurcation of localized disturbances in a model biochemical reaction. SIAM J. Appl. Math. 30, 123–135 (1976) · Zbl 0328.76065 · doi:10.1137/0130015
[4]Changeux, J. P., Thiery, J.: Regulatory Function of Biological Membranes (J. Järnefelt ed.) Vol. 11, Elsevier Publishing Co., 1968
[5]Gmitro, J. I., Scriven, L. E.: A physicochemical basis for pattern and rhythm, in: Intracellular transport (K. B. Warren, ed.) New York: Academic Press, 1966
[6]Goldbeter, A., Lefever, R.: Dissipative structures for an allosteric model. Application to glycolytic oscillations. Biophys. J. 12, 1302–1315 (1972) · doi:10.1016/S0006-3495(72)86164-2
[7]Hess, B.: Funkionelle und Morphologische Organisation der Zelle. Berlin, Springer Verlag, 1962
[8]Higgins, J.: A chemical mechanism for oscillation of glycolytic intermediates in yeast cells. Proc. Nat. Acad. Sci., U.S.A. 51, 989–994 (1964) · doi:10.1073/pnas.51.6.989
[9]Iooss, G.: Bifurcation et stabilité, Publications Mathématiques, N31, Université Paris Sud, Orsay, France, 1973
[10]Katchalsky, A., Oplatka, A.: Neurosciences Res. Symp. 1, 352–371 (1966)
[11]Katchalsky, A., Spangler, R.: Quarterly Rev. Biophys. 1, 127–175 (1968) · doi:10.1017/S0033583500000524
[12]Kauffman, S. A., Shymko, R. M., Trabert, K.: Control of sequential compartment formation in Drosophila. Science 199, 259–270 (1978) · doi:10.1126/science.413193
[13]Kogelman, S., Keller, J. B.: Transient behavior of unstable nonlinear systems with applications to the Bénard and Taylor problems. SIAM J. Appl. Math. 20, 619–637 (1971) · Zbl 0221.35009 · doi:10.1137/0120062
[14]Marsden, J. E., McCracken, M.: The Hopf bifurcation and its applications. Applied Math. Sciences, Vol. 19, New York-Heidelberg-Berlin: Springer Verlag, 1976
[15]Matkowsky, B. J.: A simple nonlinear dynamic stability problem. Bull. Amer. Math. Soc. 76, 620–625 (1970) · Zbl 0195.11102 · doi:10.1090/S0002-9904-1970-12461-2
[16]Meinhardt, H.: J. Cell Sci. 23, 117–139 (1977)
[17]Meurant, G., Saut, J. C.: Bifurcation and stability in a chemical system. J. Math. An. and Appl. 59, 69–91 (1977) · Zbl 0355.35009 · doi:10.1016/0022-247X(77)90093-2
[18]Naparstek, A., Romette, J. L., Kernevez, J. P., Thomas, D.: Memory in enzyme membranes. Nature 249, 490–491 (1974) · doi:10.1038/249490a0
[19]Naparstek, A., Thomas, D., Caplan, S. R.: Biochem. Biophys. Acta 323, 643–646 (1973) · doi:10.1016/0005-2736(73)90176-4
[20]Nicolis, G., Prigogine, I.: Self-organization in non equilibrium systems. Interscience, New York, 1977
[21]Sattinger, D. H.: Monotone methods in nonlinear elliptic and parabolic boundary value problems. Indiana Univ. Math. Journal, July (1972)
[22]Sel’kov, G. E.: Self-oscillations in glycolysis. Eur. J. Biochem. 4, 79–86 (1968) · doi:10.1111/j.1432-1033.1968.tb00175.x
[23]Thomas, D.: Artificial membranes: transport, memory, and oscillatory phenomena. In: Analysis and Control of Immobilized Enzyme Systems (Thomas and Kernevez eds.), pp. 115–150, North Holland, 1976
[24]Turing, A. M.: The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. (London) B237, 37–72 (1952) · doi:10.1098/rstb.1952.0012