zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Monodromy- and spectrum-preserving deformations. I. (English) Zbl 0439.34005

34M55Painlevé and other special equations; classification, hierarchies
[1]Ince, E.L.: Ordinary differential equations. New York: Dover Publications 1947
[2]Ablowitz, M.J., Segur, H.: Phys. Rev. Lett.38, 1103-1106 (1977) · doi:10.1103/PhysRevLett.38.1103
[3]Airault, H.: Rational solutions of Painlevé equations (to appear)
[4]Wu, T.T., McCoy, B.M., Tracy, C.A., Barouch, E.: Phys. Rev. B13, 316-371 (1976) · doi:10.1103/PhysRevB.13.316
[5]Barouch, E., McCoy, B.M., Wu, T.T.: Phys. Rev. Lett.31, 1409-1411 (1973) · doi:10.1103/PhysRevLett.31.1409
[6]McCoy, B.M., Tracy, C.A., Wu, T.T.: J. Math. Phys.18, 1058-1092 (1977) · Zbl 0353.33008 · doi:10.1063/1.523367
[7]Sat?, M., Miwa, T., Jimbo, M.: A series of papers entitled Holonomic Quantum Fields: I. Publ. RIMS, Kyoto Univ.14, 223-267 (1977); II. Publ. RIMS, Kyoto Univ.15, 201-278 (1979); III. Publ. RIMS Kyoto Univ.15, 577-629 (1979). IV., V. RIMS Preprints 263 (1978), and 267 (1978). The paper we refer to most often is III. See also a series of short notes: Studies on holonomic quantum fields, I?XV · Zbl 0383.35066 · doi:10.2977/prims/1195189284
[8]Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Commun. Pure Appl. Math.27, 97-133 (1976) · Zbl 0291.35012 · doi:10.1002/cpa.3160270108
[9]Fuchs, R.: Math. Ann.63, 301-321 (1906) · Zbl 02644002 · doi:10.1007/BF01449199
[10]Ablowitz, M.J., Segur, H.: Stud. Appl. Math.57, 13-44 (1977)
[11]Hastings, S.P., McLeod, J.B.: Univ. of Wisconsin, MRC Report No. 1861 (1978)
[12]Ablowitz, M.J., Ramani, A., Segur, H.: Lett. Nuovo Cimento23, 333 (1978). · doi:10.1007/BF02824479
[13]Two preprints: A connection between nonlinear evolution equations and ordinary differential equations ofP-type, I, II
[14]Tracy, C.A.: Proc. NATO Advanced Study Institute on: Nonlinear equations in physics and mathematics, 1978, (ed. A. Barut). Dordrecht, Holland: Reidel 1978
[15]Schlesinger, L.: J. Reine Angewandte Math.141, 96-145 (1912) · Zbl 02625645 · doi:10.1515/crll.1912.141.96
[16]Garnier, R.: Ann. Ec. Norm. Sup.29, 1-126 (1912)
[17]Birkhoff, G.D.: Trans. AMS10, 436-470 (1909) · doi:10.1090/S0002-9947-1909-1500848-5
[18]Birkhoff, G.D.: Proc. Am. Acad. Arts Sci.49, 521-568 (1913) · doi:10.2307/20025482
[19]Garnier, R.: Rend. Circ. Mat. Palermo,43, 155-191 (1919) · Zbl 02606754 · doi:10.1007/BF03014668
[20]Davis, H.T.: Introduction to nonlinear differential and integral equations. New York: Dover Publications 1962
[21]Choodnovsky, D.V., Choodnovsky, G.V.: Completely integrable class of mechanical systems connected with Korteweg-deVries and multicomponent Schrödinger equations. I. Preprint, École Polytechnique, 1978
[22]Moser, J., Trubowitz, E.: (to appear)
[23]Olver, F.W.J.: Asymptotics and special functions. New York: Academic Press 1974
[24]Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Stud. Appl. Math.53, 249-315 (1974)
[25]Flaschka, H., Newell, A.C.: Springer Lecture Notes in Physics38, 355-440 (1975) · doi:10.1007/3-540-07171-7_10
[26]Airault, H., McKean, Jr., H.P., Moser, J.: Comm. Pure Appl. Math.30, 95-148 (1977) · Zbl 0338.35024 · doi:10.1002/cpa.3160300106
[27]Brieskorn, E.: Jber. Dt. Math.-Verein.78, 93-112 (1976)
[28]Ueno, K.: Kyoto, RIMS master’s thesis, Dec. 1978. RIMS Preprints 301, 302 (1979)
[29]Sibuya, Y.: Proc. Int. Conf. Diff. Eq. pp. 709-738. (ed. H. A. Antosiewicz). New York: Academic Press 1975;
[30]Bull. AMS83, 1075-1077 (1977) · Zbl 0386.34008 · doi:10.1090/S0002-9904-1977-14391-7
[31]Zakharov, V.E., Shabat, A.B.: Sov. Phys. JETP34, 62-69 (1972)
[32]Zakharov, V.E.: Paper at I. G. Petrovskii Memorial Converence, Moscow State Univ., Jan. 1976 (this paper has been referred to in many subsequent publications, but has apparently never been published)
[33]Krichever, I.M.: Funkts. Anal. Prilozen11, 15-31 (1977)
[34]Novikov, S.P.: Rocky Mt. J. Math.8, 83-94 (1978) · Zbl 0436.35071 · doi:10.1216/RMJ-1978-8-1-83
[35]Newell, A.C.: Proc. Roy. Soc. London A365, 283-311 (1979) · Zbl 0403.35048 · doi:10.1098/rspa.1979.0018