zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the problem of diffusion in solids. (English) Zbl 0447.73002

74A20Theory of constitutive functions
76S05Flows in porous media; filtration; seepage
[1]Fick, A.: Über Diffusion. Pogg. Ann. Phys. Chem.94, 58-86 (1855).
[2]Darcy, H.: Les fontaines publiques de la ville de dijon. Paris: Dalmont. 1856.
[3]Shewmon, P. G.: Diffusion in solids. New York: McGraw-Hill. 1963.
[4]Adda, Y., Phillibert, J.: La diffusion dans les solides, Tomes I & II. Paris: Presses Universitaires de France. 1966.
[5]Girifalco, L. A., Welch, D. O.: Point defects and diffusion in strained metals. New York: Gordon & Breach. 1967.
[6]Flynn, C. P.: Point defects and diffusion. Oxford: Clarendon Press. 1972.
[7]Aravin, V. I., Numerov, S. N.: Theory of fluid flow in undeformable porous media. (Translated from Russian.) New York: Daniel Davey & Co. 1965.
[8]Scheidegger, A. E.: The physics of flow through porous media. Toronto: University of Toronto Press. 1974.
[9]Atkin, R. J., Craine, R. E.: Continuum theories of mixtures: Basic theory and historical development. Quart. J. Mech. Appl. Math.29, 209-244 (1976). · Zbl 0339.76003 · doi:10.1093/qjmam/29.2.209
[10]Atkin, R. J., Craine, R. E.: Continuum theories of mixtures: Applications. J. Inst. Math. Appl.17, 153-207 (1976). · Zbl 0355.76004 · doi:10.1093/imamat/17.2.153
[11]Bowen, R. M.: Theory of mixtures, in: Continuum physics III (Eringen, A. C., ed.). New York: Academic Press. 1976.
[12]Truesdell, C.: Sulle Basi della termomeccanica. Rend. Lincei (8)22, 33-38 158 to 166 (1957).
[13]Truesdell, C.: Mechanical basis for diffusion. J. Chem. Phys.37, 2336-2344 (1962). · doi:10.1063/1.1733007
[14]Aifantis, E. C.: Diffusion of a perfect fluid in a linear elastic stress field. Mech. Res. Comm.3, 245-250 (1976). · Zbl 0366.76070 · doi:10.1016/0093-6413(76)90053-7
[15]Aifantis, E. C., Gerberich, W. W.: Gaseous diffusion in a stressed thermoelastic solid ? I: The thermomechanical formulation. Acta Mech.28, 1-24 (1977). · Zbl 0391.76069 · doi:10.1007/BF01208785
[16]Aifantis, E. C., Gerberich, W. W.: Gaseous diffusion in a stressed thermoelastic solid ? II: Thermodynamic structure and transport theory. Acta Mech.28, 25-47 (1977). · Zbl 0404.76077 · doi:10.1007/BF01208786
[17]Aifantis, E. C.: Introducing a multi-porous medium. Developments in mechanics8, 209-211 (1977).
[18]Barenblatt, G. I., Zheltov, Iu. P., Kochina, I. N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (strata). PMM24, 1286-1303 (1960). (Transl. of Priklad. Mat. Mekh.24, 852-864).
[19]Spencer, A. J. M.: Theory of invariants, in: Continuum physics I (Eringen, A. C., ed.). New York: Academic Press. 1971.
[20]Cattaneo, C.: Atti del Seminario Matematico e Fisico della Universita di Modena3, 3-21 (1948).
[21]Cattaneo, C.: Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée. Compt. Rend. Acad. Sci.247, 431-433 (1958).
[22]Maxwell, J. C.: On the dynamical theory of gases. Phil. Trans. Roy. Soc. (Lond.)157, 49-88 (1867). · doi:10.1098/rstl.1867.0004
[23]Barenblatt, G. I.: On certain boundary-value problems for the equations of seepage of a liquid in fissured rocks. PMM27, 513-518 (1963). (Transl. of Priklad. Mat. Mekh.27, 784-793.)
[24]Ting, T. W.: Certain non-steady flows of second-order fluids. Arch. Rat. Mech. Anal.14, 1-26 (1963). · Zbl 0139.20105 · doi:10.1007/BF00250690
[25]Chen, P. J., Gurtin, M. E.: On a theory of heat conduction involving two temperatures. ZAMP19, 614-627 (1968). · Zbl 0159.15103 · doi:10.1007/BF01594969
[26]Ting, T. W.: Parabolic and pseudoparabolic partial differential equations. J. Math. Soc. Japan21, 440-453 (1969). · Zbl 0177.36701 · doi:10.2969/jmsj/02130440
[27]Ting, T. W.: A cooling process according to two-temperature theory of heat conduction. J. Math. Anal. Appl.45, 23-31 (1974). · Zbl 0272.35039 · doi:10.1016/0022-247X(74)90116-4
[28]Volterra, V.: Theory of functionals and of integral and integro differential equations. New York: Dover Publications. 1959.
[29]Gurtin, M. E., Pipkin, A. C.: A general theory of heat conduction with finite wave speeds. Arch. Rat. Mech. Anal.31, 113-126 (1968). · Zbl 0164.12901 · doi:10.1007/BF00281373
[30]Van Leeuwen, H. P.: A quantitative model of hydrogen induced grain boundary cracking. J. Corros., NACE29, 197-204 (1973).
[31]Nowacki, W.: Certain problems of thermo-diffusion in solids. Arch. Mech.23, 731-755 (1971).
[32]Gurtin, M. E.: On the linear theory of diffusion through an elastic solid. Proc. Conf. Environmental Degradation Engng. Matl’s. pp. 107-119, Blacksburg, 1977.
[33]Suklje, L.: Rheological aspects of soil mechanics. London: Wiley-Interscience. 1969.
[34]Bear, J.: Dynamics of fluids in porous media. New York: Elsevier. 1972.
[35]Aifantis, E. C.: A new interpretation of diffusion in regions with high-diffusivity paths. A continuum approach. Acta Metallurgica27, 683-691 (1979). · doi:10.1016/0001-6160(79)90019-1
[36]Aifantis, E. C.: Continuum basis for diffusion in regions with multiple diffusivity. J. Appl. Phys.50, 1334-1338 (1979). · doi:10.1063/1.326167