zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Proper efficiency with respect to cones. (English) Zbl 0452.90073

90C31Sensitivity, stability, parametric optimization
[1]Cochrane, J. L., andZeleny, M., Editors,Multiple Criteria Decision-Making, University of South Carolina Press, Columbia, South Carolina, 1973.
[2]Bitran, G., andMagnanti, T.,The Structure of Admissible Points with Respect to Cone Dominance, Journal of Optimization Theory and Applications, Vol. 29, pp. 573-614, 1979. · Zbl 0389.52021 · doi:10.1007/BF00934453
[3]Kuhn, H. W., andTucker, A. W.,Nonlinear Programming, Second Berkeley Symposium on Mathematical Statistics and Probability, Edited by J. Neyman, University of California Press, Berkeley, California, 1951.
[4]Geoffrion, A. M.,Proper Efficiency and the Theory of Vector Maximization, Journal of Mathematical Analysis and Applications, Vol. 22, pp. 613-630, 1968. · Zbl 0181.22806 · doi:10.1016/0022-247X(68)90201-1
[5]Borwein, J.,Proper Efficient Points for Maximizations with Respect to Cones, SIAM Journal on Control and Optimization, Vol. 15, pp. 57-63, 1977. · Zbl 0369.90096 · doi:10.1137/0315004
[6]Benson, B.,An Improved Definition of Proper Efficiency for Vector Maximization with Respect to Cones, Journal of Mathematical Analysis and Applications, Vol. 71, pp. 232-241, 1979. · Zbl 0418.90081 · doi:10.1016/0022-247X(79)90226-9
[7]Benson, H., andMorin, T.,The Vector Maximization Problems: Proper Efficiency and Stability, SIAM Journal on Applied Mathematics, Vol. 32, pp. 64-72, 1977. · Zbl 0357.90059 · doi:10.1137/0132004
[8]Yu, P. L.,Cone Convexity, Cone Extreme Points, and Nondominated Solutions in Decision Problems with Multi-Objectives, Journal of Optimization Theory and Applications, Vol. 14, pp. 319-377, 1974. · Zbl 0268.90057 · doi:10.1007/BF00932614
[9]Rockafellar, R. T.,Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.
[10]Henig, M. I.,A Cone Separation Theorem, Journal of Optimization Theory and Applications, Vol. 36, pp. 451-455, 1982. · Zbl 0452.90072 · doi:10.1007/BF00934357
[11]Arrow, K. J., Barankin, E. W., andBlackwell, D.,Admissible Points of Convex Sets, Contribution to the Theory of Games, Edited by H. W. Kulan and A. W. Tucker, Princeton University Press, Princeton, New Jersey, 1953.
[12]Hartley, R.,On Cone-Efficiency, Cone-Convexity, and Cone-Compactness, SIAM Journal of Applied Mathematics, Vol. 34, pp. 211-222, 1978. · Zbl 0379.90005 · doi:10.1137/0134018
[13]Stoer, J., andWitzgall, L.,Convexity and Optimization in Finite Dimensions, Vol. 1, Springer-Verlag, Berlin, Germany, 1970.