zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Interval exchange transformations. (English) Zbl 0455.28006
28D05Measure-preserving transformations
54H20Topological dynamics
[1]N. Bourbaki,Algèbre, Ch. IX, Paris, Hermann, 1959.
[2]N. A. Friedman,Introduction to Ergodic Theory, New York, Van Nostrand-Rheinhold, 1970.
[3]H. Furstenberg,Stationary Processes and Prediction theory, Annals of Math. Studies, Princeton, 1960.
[4]A. Hajian and S. Kakutani,Weakly wandering sets and invariant measures, Trans. Amer. Math. Soc.110 (1964), 136–151. · doi:10.1090/S0002-9947-1964-0154961-1
[5]P. R. Halmos,Lectures on Ergodic Theory, Math. Soc. of Japan, 1956.
[6]G. H. Hardy and E. M. Wright,An Introduction to the Theory of Numbers, Oxford, Clarendon Press, 1938.
[7]S. Kakutani,Induced measure preserving transformations, Proc. Imp. Acad. Tokyo19 (1943), 635–641. · Zbl 0060.27406 · doi:10.3792/pia/1195573248
[8]M. Keane,Interval exchange transformations, Math. Z.141 (1975), 25–31. · Zbl 0288.28020 · doi:10.1007/BF01236981
[9]M. Keane,Non-ergodic interval exchange transformations, Israel J. Math.26 (1977), 188–196. · Zbl 0351.28012 · doi:10.1007/BF03007668
[10]C. Boldrighini, M. Keane and F. Marchetti,Billiards in polygons, preprint, 1977.
[11]H. Keynes and D. Newton,A minimal non-uniquely ergodic interval exchange transformation, Math. Z.148 (1976), 101–105. · Zbl 0308.28014 · doi:10.1007/BF01214699
[12]V. A. Rohlin,Exact endomorphisms of a Lebesgue space, Amer. Math. Soc. Transl. (2)49 (1966), 171–240.
[13]Ya. G. Sinai,Introduction to Ergodic Theory, Princeton Lecture Notes Series, Princeton University Press, 1977.
[14]W. A. Veech,A Second Course in Complex Analysis, New York, Benjamin, 1967.
[15]W. A. Veech,Topological dynamics, to appear in Bull. Amer. Math. Soc.