zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Differential geometry of CR-submanifolds. (English) Zbl 0464.53044

53C40Global submanifolds (differential geometry)
53B25Local submanifolds
53C42Immersions (differential geometry)
[1]Bejancu, A., ?CR Submanifolds of a Kaehler Manifold, I?,Proc. Am. Math. Soc. 69, 135-142 (1978).
[2]Bejancu, A., ?CR Submanifolds of a Kaehler Manifold, II?,Trans. Am. Math. Soc. 250, 333-345 (1979). · doi:10.1090/S0002-9947-1979-0530059-6
[3]Chen, B.Y., ?On CR-Submanifolds of a Kaehler Manifold? (to appear).
[4]Lawson, H.B., Jr, ?Rigidity Theorems in Rank-1 Symmetric Spaces?,J. Diff. Geom. 4, 349-357 (1970).
[5]Okumura, M., ?Compact Real Hypersurfaces of a Complex Projective Space?,J. Diff. Geom. 12, 595-598 (1977).
[6]Simons, J., ?Minimal Varieties in Riemannian Manifolds?,Ann. Math. 88, 62-105 (1968). · Zbl 0181.49702 · doi:10.2307/1970556
[7]Stong, R.E., ?The Rank of anf-Structure?,Ködai Math. Sem. Rep. 29, 207-209 (1977). · Zbl 0409.53028 · doi:10.2996/kmj/1138833583
[8]Yano, K., ?On Harmonic and Killing Vector Fields?,Ann. Math. 55, 38-45 (1952). · Zbl 0046.15603 · doi:10.2307/1969418
[9]Yano, K., ?On a Structure Defined by a Tensor Fieldf of Type (1,1) Satisfyingf 3+f=0?,Tensor N.S. 14, 99-109 (1963).
[10]Yano, K. and Ishihara, S., ?Submanifolds with Parallel Mean Curvature Vector,?J. Diff. Geom. 6, 95-118 (1971).
[11]Yano, K. and Kon, M.,Anti-invariant Submanifolds, Dekker, New York, 1976.
[12]Yano, K. and Kon, M., ?Generic Submanifolds?,Ann. Mat. 123, 59-92 (1980). · Zbl 0441.53043 · doi:10.1007/BF01796540
[13]Yano, K. and Kon, M., ?CR-sous-variétés d’un espace projectif complexe?,C.R. Acad. Sci., Paris288, 515-517 1979.