zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Some results on global stability of a predator-prey system. (English) Zbl 0464.92021
92D25Population dynamics (general)
[1]Albrecht, F., Gatzke, H., Haddad, A., Wax, N.: The dynamics of two interacting populations. J. Math. Anal. Appl. 46, 658-670 (1974) · Zbl 0281.92012 · doi:10.1016/0022-247X(74)90267-4
[2]Freedman, H. I.: Graphical stability, enrichment, and pest control by a natural enemy. Math. Biosci. 31, 207-225 (1976) · Zbl 0373.92023 · doi:10.1016/0025-5564(76)90080-8
[3]Gaus, G. F., Smaragdova, N. P., Witt, A. A.: Further studies of interaction between predators and prey. J. Anim. Ecol. 5, 1-18 (1936) · doi:10.2307/1087
[4]Goh, B. S.: Global stability in many species systems. Amer. Natur. 111 (977), 135-143 (1977) · doi:10.1086/283144
[5]Hale, J. K.: Ordinary differential equations. New York: Wiley-Interscience 1969
[6]Hastings, A.: Global stability of two species system. J. Math. Biol. 5, 399-403 (1978)
[7]Hsu, S. B.: On global stability of a predator-prey system. Math. Biosci. 39, 1-10 (1978) · Zbl 0383.92014 · doi:10.1016/0025-5564(78)90025-1
[8]Hsu, S. B., Hubbel, S. P., Waltman, P.: Competing predators. SIAM J. Applied Math. 35, 617-625 (1978) · Zbl 0394.92025 · doi:10.1137/0135051
[9]May, R. M.: Stability and complexity in model ecosystems. Princeton, U.P., Princeton, N.J., 1974
[10]Oaten, A., Murdoch, W. W.: Functional response and stability in predator-prey system. Amer. Natur. 109, 289-298 (1975) · doi:10.1086/282998
[11]Real, L. A.: The kinetics of functional response. Amer. Natur. 111 (1978), 289-300 (1977)
[12]Rosenzweig, M. L.: Why the prey curve has a hump. Amer. Natur. 103, 81-87 (1969) · doi:10.1086/282584
[13]Rosenzweig, M. L., MacArthur, R. H.: Graphical representation and stability conditions of predator-prey interaction. Amer. Natur. 97, 209-223 (1963) · doi:10.1086/282272
[14]Rosenzweig, M. L.: Paradox of enrichment: Destabilization of exploitation ecosystem in ecological time. Science 171, 385-387 (1971) · doi:10.1126/science.171.3969.385
[15]Maynard Smith, J.: Models in ecology. Cambridge: University Press 1974