zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A study of Rosenbrock-type methods of high order. (English) Zbl 0469.65047
MSC:
65L05Initial value problems for ODE (numerical methods)
65L20Stability and convergence of numerical methods for ODE
References:
[1]Rosenbrock, H.H.: Some general implicit processes for the num, solution of differential equations. Comput. J.5, 329-331 (1963) · Zbl 0112.07805 · doi:10.1093/comjnl/5.4.329
[2]Calahan, D.A.: A stable and accurate method for the numerical integration of nonlinear systems. Proc. IEEE,56, 744 (1968) · doi:10.1109/PROC.1968.6367
[3]van der Houwen, P.J.: Construction of integration formulas for initial value problems. Amsterdam: North Holland 1977
[4]Wolfbrandt, A.: A study of Rosenbrock processes with respect to order conditions and stiff stability. Thesis, Göteborg 1977
[5]Nørsett S.P., Wolfbrandt, A.: Order conditions for Rosenbrock type methods. Numer. Math.32, 1-15 (1979) · Zbl 0471.65044 · doi:10.1007/BF01397646
[6]Kaps, P., Rentrop, P.: Generalized Runge Kutta methods of order four with step size control for stiff ODE’s. Numer. Math.33, 55-68 (1979) · Zbl 0436.65047 · doi:10.1007/BF01396495
[7]Hairer, E., Wanner, G.: Multistep multistage multiderivative methods for ODE’s. Computing11, 287-303 (1973) · Zbl 0271.65048 · doi:10.1007/BF02252917
[8]Hairer, E., Wanner, G.: On the Butcher group and general multivalue methods. Computing13, 1-15 (1974) · Zbl 0293.65050 · doi:10.1007/BF02268387
[9]Hairer, E., Wanner, G.: A theory for Nystroem methods. Numer. Math.25, 383-400 (1976) · Zbl 0307.65053 · doi:10.1007/BF01396335
[10]Nørsett, S.P., Wanner, G.: The real-pole sandwich and oscillation equations. BIT19, 79-94 (1979) · Zbl 0413.65011 · doi:10.1007/BF01931224
[11]Enright, W.H. Hull, T.E., Lindberg, B.: Comparing numerical methods for stiff systems of ODE’s. BIT15, 10-48 (1975) · Zbl 0301.65040 · doi:10.1007/BF01932994
[12]Gottwald, B.A., Wanner, G.: A reliable Rosenbrock integrator for stiff differential equations. Computing26, 335-360 (1981) · Zbl 0451.65056 · doi:10.1007/BF02237954
[13]Wanner, G.: On the integration of stiff differential equations, ISNM 37. (J. Descloux and J. Marti eds.) Basel: Birkhäuser 1977
[14]Kaps, P.: Modifizierte Rosenbrockmethoden der Ordnungen4, 5 and 6 zur numerischen Integration steifer Differentialgleichungen, Dissertation Innsbruck 1977
[15]Chan, Y.N.I., Birnbaum, I., Lapidus, L.: Solution of stiff differential equations and the use of imbedding techniques. Industr. and Engin. Chemistry Fundamentals,17, 133-148 (1978) · doi:10.1021/i160067a001
[16]Wanner, G.: On the choice of ? for singly-implicit RK or Rosenbrock methods. BIT20, 102-106 (1980) · Zbl 0426.65026 · doi:10.1007/BF01933591
[17]Nørsett, S.P.: One step methods of Hermite type for numerical integration of stiff systems. BIT14, 63-77 (1974) · Zbl 0278.65078 · doi:10.1007/BF01933119