zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the convex approximation property and the asymptotic behavior of nonlinear contractions in Banach spaces. (English) Zbl 0475.47037

47H09Mappings defined by “shrinking” properties
46B99Normed linear spaces and Banach spaces
[1]J. B. Baillon,Un théorème de type ergodique pour les contractions nonlinéaires dans un espace de Hilbert, C. R. Acad. Sci. Paris280 (1975), 1511–1514.
[2]J. B. Baillon, Thèse, Université de Paris VI, 1978.
[3]B. Beauzamy et P. Enflo,Théorèmes de point fixe et d’approximation, preprint.
[4]F. Browder,Nonlinear Operators and Nonlinear Equations of Evolution in Banach Spaces, Proc. Symposia Pure Math. XVIII, pt. 2, Amer. Math. Soc., Providence, R.I., 1976.
[5]R. E. Bruck,On the almost-convergence of iterates of a nonexpansive mapping in Hilbert space and the structure of the weak ω-limit set, Israel J. Math.29 (1978), 1–16. · Zbl 0367.47037 · doi:10.1007/BF02760397
[6]R. E. Bruck,A simple proof of the mean ergodic theorem for nonlinear contractions in Banach spaces, Israel J. Math.32 (1979), 279–282. · Zbl 0423.47024 · doi:10.1007/BF02764907
[7]R. E. Bruck and G. B. Passty,Almost convergence of the infinite product of resolvents in Banach spaces, Nonlinear Analysis3 (1979), 279–282. · Zbl 0407.47035 · doi:10.1016/0362-546X(79)90083-X
[8]D. P. Giesy,On a convexity condition in normed linear spaces, Trans. Amer. Math. Soc.125, (1966), 114–146. · doi:10.1090/S0002-9947-1966-0205031-7
[9]G. Pisier,Sur les espaces de Banch qui ne contiennent pas uniformement de l l m . C.R. Acad. Sci. Paris277 (1973), A991-A994.
[10]S. Reich,Nonlinear evolution equations and nonlinear ergodic theorems, Nonlinear Analysis1 (1977), 319–330. · Zbl 0359.34059 · doi:10.1016/S0362-546X(97)90001-8
[11]S. Reich,Almost convergence and nonlinear ergodic theorems, J. Approximation Theory24 (1978), 269–272. · Zbl 0404.47032 · doi:10.1016/0021-9045(78)90012-6
[12]E. H. Zarantonello,Protections on convex sets in Hilbert space and spectral theory, inContributions to Nonlinear Functional Analysis, Academic Press, New York, 1971, pp. 237–244.