zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Quadrature formulas for oscillatory integral transforms. (English) Zbl 0477.65090

65R10Integral transforms (numerical methods)
65D32Quadrature and cubature formulas (numerical methods)
65T40Trigonometric approximation and interpolation (numerical methods)
44A15Special transforms (Legendre, Hilbert, etc.)
42A38Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
[1]Abramowitz, A., Stegun, I.B.: Handbook of Mathematical Functions. NBS Appl. Math. Series 53, Washington DC 1964
[2]Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration. New York: Academic Press 1975
[3]Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.: Higher Transcendental Functions. Vol. 2, New York: McGraw-Hill 1953
[4]Gautschi, W.: Efficient computation of the complex error function. SIAM J. Numer. Anal.7, 187-198 (1970) · Zbl 0204.48304 · doi:10.1137/0707012
[5]Gautschi, W.: On Generating Orthogonal Polynomials. SIAM J. Scientific Statistical Comput. (to appear)
[6]Hildebrand, F.B.: Introduction to Numerical Analysis. 2nd ed., New York: McGraw-Hill, 1974
[7]Krylov, V.I., Kruglikova, L.G.: A Handbook on Numerical Harmonic Analysis. (Russian). Izdat ?Nauka i Tehnika?, Minsk, 1968 [English translation by Israel Progr. Sci. Transl. Jerusalem 1969]
[8]Olver, F.W.J.: Asymptotics and Special Functions. New York: Academic Press, 1974
[9]Rabinowitz, P., Weiss, G.: Tables of abscissas and weights for numerical evaluation of integrals of the form 0 e -x x n f(x)dx , MTAC,13, 285-294 (1959)
[10]Shao, T.S., Chen, T.C., Frank, R.M.: Tables of zeros and Gaussian weights of certain associated Laguerre polynomials and the related generalized Hermite polynomials. Math. Comput.18, 598-616 (1964) · doi:10.1090/S0025-5718-1964-0166397-1
[11]Stenger, F.: Numerical methods based on Whittaker cardinal, or sinc functions. SIAM Rev.23, 165-224 (1981) · Zbl 0461.65007 · doi:10.1137/1023037
[12]Stenger, F.: The asymptotic approximation of certain integrals. SIAM J. Math. Anal.1, 392-404 (1970) · Zbl 0203.37201 · doi:10.1137/0501036
[13]Szegö, G.: Orthogonal Polynomials. Colloquium Publication, Vol. 23, 4th ed., Amer. Math. Soc., Providence, R.I. 1975
[14]Ting, B.Y., Luke, Y.L.: Computation of integrals with oscillatory and singular integrands. Math. Comput.37, 169-183 (1981) · doi:10.1090/S0025-5718-1981-0616369-5
[15]Titchmarch, E.C.: The Theory of Functions. 2nd ed., Oxford, London, New York: University Press 1939
[16]Todd, J.: Evaluation of the exponential integral for large complex arguments. J. Res. Nat. Bur. Standards.52, 313-317 (1954)
[17]Weber, H.: Numerical Computation of the Fourier Transform Using Laguerre Functions and the Fast Fourier Transform. Numer. Math.36, 197-209 (1981) · Zbl 0445.65114 · doi:10.1007/BF01396758
[18]Widder, D.V.: The Laplace Transform. Princeton: University Press, 1941
[19]Wong, R.: Error Bounds for asymptotic expansions of Hankel transforms. SIAM J. Math. Anal.7, 799-808 (1976) · Zbl 0339.44003 · doi:10.1137/0507061